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Foreword

This is a remarkable book. Arthur Yaghjian is by training and profession an
electrical engineer; but he has a deep interest in fundamental questions usually
reserved for physicists. He has studied the relevant papers of an enormous
literature that accumulated for longer than a century. The result is a fresh and
novel approach to old problems providing better solutions and contributing
to their understanding.

Physicists since Lorentz in the late nineteenth century have looked at
the equations of motion of a charged object primarily as a description of a
fundamental particle, typically the electron. Since the limitations of classical
physics due to quantum mechanics have long been known, Yaghjian considers a
macroscopic object, a spherical insulator with a surface charge. He thus avoids
the pitfalls that have misguided research in the field since Dirac’s famous paper
of 1938.

The first edition of this book, published in 1992, was an apt tribute to
the centennial of Lorentz’s seminal paper of 1892 in which he first proposed
the extended model of the electron. In the present second edition, attention is
also paid to very recent work on the equation of motion of a classical charged
particle. Mathematical approximations for specific applications are clearly dis-
tinguished from the physical validity of their solutions. It is remarkable how
these results call for empirical tests yet to be performed at the necessarily ex-
treme conditions and with sufficiently high accuracy. In these important ways,
the present book thus revives interest in the classical dynamics of charged ob-
jects.

Syracuse University Fritz Rohrlich
2005





Preface to the Second Edition

Chapters 1 through 6 and the Appendices in the Second Edition of the book
remain the same as in the First Edition except for the correction of a few
typographical errors, for the addition and rewording of some sentences, and
for the reformatting of some of the equations to make the text and equations
read more clearly. A convenient three-vector form of the equation of motion
has been added to Chapter 7 that is used in expanded sections of Chapter 7 on
hyperbolic and runaway motions, as well as in Chapter 8. Several references
and an index have also been added to the Second Edition of the book.

The method used in Chapter 8 of the First Edition for eliminating the
noncausal pre-acceleration from the equation of motion has been generalized
in the Second Edition to eliminate pre-deceleration as well. The generalized
method is applied to obtain the causal solution to the equation of motion
of a charge accelerating in a uniform electric field for a finite time interval.
Alternative derivations of the Landau-Lifshitz approximation to the Lorentz-
Abraham-Dirac equation of motion are also given in Chapter 8 along with
Spohn’s elegant solution of this approximate equation for a charge moving
in a uniform magnetic field. A necessary and sufficient condition is found for
this Landau-Lifshitz approximation to be an accurate solution to the exact
Lorentz-Abraham-Dirac equation of motion.

Many of the additions that have been made to the Second Edition of the
book have resulted from illuminating discussions with Professor W.E. Baylis
of the University of Windsor, Professor Dr. H. Spohn of the Technical Uni-
versity of Munich, and Professor Emeritus F. Rohrlich of Syracuse University.
Dr. A. Nachman of the United States Air Force Office of Scientific Research
supported and encouraged much of the research that led to the Second Edition
of the book.

Concord, Massachusetts Arthur D. Yaghjian
2005





Preface to the First Edition

This re-examination of the classical model of the electron, introduced by H. A.
Lorentz 100 years ago, serves as both a review of the subject and as a context
for presenting new material. The new material includes the determination
and elimination of the basic cause of the pre-acceleration, and the derivation
of the binding forces and total stress-momentum-energy tensor for a charged
insulator moving with arbitrary velocity. Most of the work presented here was
done while on sabbatical leave as a guest professor at the Electromagnetics
Institute of the Technical University of Denmark.

I am indebted to Professor Jesper E. Hansen and the Danish Research
Academy for encouraging the research. I am grateful to Dr. Thorkild B.
Hansen for checking a number of the derivations, to Marc G. Cote for helping
to prepare the final camera-ready copy of the manuscript, and to Jo-Ann M.
Ducharme for typing the initial version of the manuscript.

The final version of the monograph has benefited greatly from the help-
ful suggestions and thoughtful review of Professor F. Rohrlich of Syracuse
University, and the perceptive comments of Professor T. T. Wu of Harvard
University.

Concord, Massachusetts Arthur D. Yaghjian
April, 1992
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4.1 Poincaré Binding Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Binding Forces at Arbitrary Velocity . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Electric Polarization Producing the Binding Forces . . . . 32

5 Electromagnetic, Electrostatic, Bare, Measured, and
Insulator Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Bare Mass in Terms of Electromagnetic and

Electrostatic Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.1 Extra Momentum-Energy in Newton’s Second Law of

Motion for Charged Particles . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Reason for Lorentz Setting the Bare Mass Zero . . . . . . . . 42

6 Transformation and Redefinition of Force-Power and
Momentum-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Transformation of Electromagnetic, Binding, and

Bare-Mass Force-Power and Momentum-Energy . . . . . . . . . . . . . 45
6.1.1 Total Stress-Momentum-Energy Tensor for the

Charged Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Redefinition of Electromagnetic Momentum and Energy . . . . . . 54



XIV Contents

7 Momentum and Energy Relations . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1 Hyperbolic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Runaway Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Solutions to the Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . 67
8.1 Solution to the Equation of Rectilinear Motion . . . . . . . . . . . . . . 68

8.1.1 Formal Solution to the General Equation of Motion . . . . 72
8.2 Cause and Elimination of the Pre-Acceleration . . . . . . . . . . . . . . 73

8.2.1 Cause of the Pre-Acceleration . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.2 Elimination of the Pre-Acceleration . . . . . . . . . . . . . . . . . . 79
8.2.3 Determination of the Transition Force for

Rectilinear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.4 Motion of Charge in a Uniform Electric Field

for a Finite Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.5 Conservation of Momentum-Energy in the

Causal Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Power Series Solution to the Equation of Motion . . . . . . . . . . . . 98

8.3.1 Power Series Solution to Rectilinear Equation of Motion100
8.3.2 Power Series Solution to General Equation of Motion . . 102
8.3.3 Charge Moving in a Uniform Magnetic Field . . . . . . . . . . 108

8.4 The Finite Difference Equation of Motion . . . . . . . . . . . . . . . . . . 112
8.5 Renormalization of the Equation of Motion . . . . . . . . . . . . . . . . . 115

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Derivation and Transformation of
Small-Velocity Force and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.1 Derivation of the Small-Velocity Force and Power . . . . . . . . . . . . 121

A.1.1 Derivation of the Proper-Frame Force . . . . . . . . . . . . . . . . 121
A.1.2 Derivation of the Small-Velocity Power . . . . . . . . . . . . . . . 124

A.2 Relativistic Transformation of the Small-Velocity
Force and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2.1 Relativistic Transformation of the Proper-Frame Force . 125
A.2.2 Relativistic Transformation of the Small-Velocity Power 126

A.3 Noncovariance of the Power Equation . . . . . . . . . . . . . . . . . . . . . . 127

B Derivation of Force and Power
at Arbitrary Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.1 The 1/a Terms of Self Electromagnetic

Force and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.1.1 Evaluation of 1/a Term of Self Electromagnetic Force . . 130
B.1.2 Evaluation of 1/a Term of Self Electromagnetic Power . 133

B.2 Radiation Reaction of Self Electromagnetic
Force and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2.1 Evaluation of the Radiation Reaction Force . . . . . . . . . . . 134



Contents XV

B.2.2 Evaluation of the Radiation Reaction Power . . . . . . . . . . 137

C Electric and Magnetic Fields in a Spherical
Shell of Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D Derivation of the Linear Terms for the
Self Electromagnetic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



1

Introduction and Summary of Results

The primary purpose of this work is to determine an equation of motion for
the classical Lorentz model of the electron that is consistent with causal so-
lutions to the Maxwell-Lorentz equations, the relativistic generalization of
Newton’s second law of motion, and Einstein’s mass-energy relation. (The
latter two laws of physics were not discovered until after the original works of
Lorentz, Abraham, and Poincaré. The hope of Lorentz and Abraham for de-
riving the equation of motion of an electron from the self force determined by
the Maxwell-Lorentz equations alone was not fully realized.) The work begins
by reviewing the contributions of Lorentz, Abraham, Poincaré, and Schott
to this century-old problem of finding the equation of motion of an extended
electron. Their original derivations, which were based on the Maxwell-Lorentz
equations and assumed a zero bare mass, are modified and generalized to ob-
tain a nonzero bare mass and consistent force and power equations of motion.
By looking at the Lorentz model of the electron as a charged insulator, gen-
eral expressions are derived for the binding forces that Poincaré postulated
to hold the charge distribution together. A careful examination of the classic
Lorentz-Abraham derivation reveals that the self electromagnetic force must
be modified during a short time interval after the external force is first ap-
plied and after all other nonanalytic points in time of the external force. The
resulting modification to the equation of motion, although slight, eliminates
the noncausal pre-acceleration (and pre-deceleration) that has plagued the
solution to the Lorentz-Abraham equation of motion. As part of the analysis,
general momentum and energy relations are derived and interpreted physi-
cally for the solutions to the equation of motion, including “hyperbolic” and
“runaway” solutions. Also, a stress-momentum-energy tensor that includes
the binding, bare-mass, and electromagnetic momentum-energy densities is
derived for the charged insulator model of the electron, and an assessment
is made of the redefinitions of electromagnetic momentum-energy that have
been proposed in the past to obtain a consistent equation of motion.

Many fine articles have been written on the classical theories of the elec-
tron, such as [7], [32], [41], [42], [52], [71], and [72], to complement the original
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works by Lorentz [4], Abraham [3], Poincaré [19], and Schott [16]. However,
in returning to the original derivations of Lorentz, Abraham, Poincaré, and
Schott, re-examining them in detail, modifying them when necessary, and sup-
plementing them with the results of special relativity not contained explicitly
in the Maxwell-Lorentz equations, it is possible to clarify and resolve a num-
ber of the subtle problems that have remained with the classical theory of the
Lorentz model of the extended electron.

An underlying motivation to the present analysis is the idea that one
can separate the problem of deriving the equation of motion of the extended
model of the electron from the question of whether the model approximates an
actual electron. Hypothetically, could not one enter the classical laboratory,
distribute a charge e uniformly on the surface of an insulating sphere of radius
a, apply an external electromagnetic field to the charged insulator and observe
a causal motion predictable from the relativistically invariant equations of
classical physics? Moreover, the short-range polarization forces binding the
excess charge to the surface of the insulator need not be postulated, but
should be derivable from the relativistic generalization of Newton’s second law
of motion applied to both the charge and insulator, and from the requirement
that the charge remain uniformly distributed on the spherical insulator in its
proper inertial frame of reference. A summary of the results in each of the
succeeding chapters follows.

Chapter 2 introduces the original Lorentz-Abraham force and power equa-
tions of motion for Lorentz’s relativistically rigid model of the electron moving
without rotation1 with arbitrary velocity. Lorentz and Abraham derived their
force equation of motion by determining the self electromagnetic force induced
by the moving charge distribution upon itself, and setting the sum of the ex-
ternally applied and self electromagnetic force equal to zero, that is, they
assumed a zero “bare mass.” Similarly, they derived their power equation of
motion by setting the sum of the externally applied and self electromagnetic
power (work done per unit time by the forces on the charge distribution) equal
to zero.

To the consternation of Abraham and Lorentz, these two equations of
motion were not consistent. In particular, the scalar product of the veloc-
ity of the charge center with the self electromagnetic force (force equation of
motion) did not equal the self electromagnetic power (power equation of mo-
tion). Merely introducing a nonzero bare mass into the equations of motion
does not remove this inconsistency between the force and power equations of
motion. Moreover, it is shown that the apparent inconsistency between self
electromagnetic force and power is not a result of the electromagnetic mass in
1 The work of Nodvik [8, eq. (7.28)] shows that the effect of a finite angular velocity

of rotation on the self force and power of the Lorentz model approaches zero to
the order of the radius of the charge as it approaches zero and thus classical
rotational effects are of the same order as the higher order terms neglected in the
Lorentz-Abraham equations of motion.
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the equations of motion equaling 4/3 the electrostatic mass, nor a necessary
consequence of the electromagnetic momentum-energy not transforming like
a four-vector. The 4/3 factor occurs in both the force and power equations
of motion, (2.1) and (2.4), and it was of no concern to Abraham, Lorentz, or
Poincaré in their original works which, as mentioned above, appeared before
Einstein proposed the mass-energy relationship.

Neither the self electromagnetic force-power nor the momentum-energy
transforms as a four-vector. (For this reason, they are referred to herein as
force-power and momentum-energy rather than four-force and four-momen-
tum.) However, there are any number of force and power functions that could
be added to the electromagnetic momentum and energy that would make
the total momentum-energy (call it Gi) transform like a four-vector, and yet
not satisfy dGi/ds ui = 0, so that the inconsistency between the force and
power equations of motion would remain. Conversely, it is possible for the
proper time derivatives of momentum and energy (force-power) to transform
as a four-vector and satisfy dGi/ds ui = 0 without the momentum-energy
Gi itself transforming like a four-vector. In fact, Poincaré introduced binding
forces that removed the inconsistency between the force and power equations
of motion, and restored the force-power to a four-vector, without affecting the
4/3 factor in these equations or requiring the momentum and energy of the
charged sphere to transform as a four-vector.

The apparent inconsistency between the self electromagnetic force and
power is investigated in detail in Chapter 3 by reviewing the Abraham-Lorentz
derivation and rigorously rederiving the electromagnetic force and power for a
charge moving with arbitrary velocity. For the Lorentz model of the electron
moving with arbitrary velocity, one finds that the Abraham-Lorentz deriva-
tion depends in part on differentiating with respect to time the velocity in the
electromagnetic momentum and energy determined for a charge distribution
moving with constant velocity. Although Lorentz and Abraham give a plausi-
ble argument for the validity of this procedure, the first rigorous derivation of
the self electromagnetic force and power for the Lorentz electron moving with
arbitrary velocity was given by Schott in 1912, several years after the origi-
nal derivations of Lorentz and Abraham. Because Schott’s rigorous derivation
of the electromagnetic force and power, obtained directly from the Liénard-
Wiechert potentials for an arbitrarily moving charge, is extremely involved
and difficult to repeat, a much simpler, yet rigorous derivation is provided in
Appendix B.

It is emphasized in Section 3.1 that the self electromagnetic force and
power are equal to the internal Lorentz force and power densities integrated
over the charge-current distribution of the extended electron, and thus one has
no a priori guarantee that they will obey the same relativistic transformations
as an external force and power applied to a point mass. An important conse-
quence of the rigorous derivations of the electromagnetic force and power of
the extended electron, with arbitrary velocity, is that the integrated self elec-
tromagnetic force, and thus the Lorentz-Abraham force equation of motion
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of the extended electron, is shown to transform as an external force applied
to a point mass. However, the rigorous derivations also reveal that the in-
tegrated self electromagnetic power, and thus the Lorentz-Abraham power
equation of motion, for the relativistically rigid model of the extended elec-
tron do not transform as the power delivered to a moving point mass. This
turns out to be true even when the radius of the charged sphere approaches
zero, because the internal fields become singular as the radius approaches zero
and the velocity of the charge distribution is not the same at each point on a
moving, relativistically rigid shell. Thus, it is not permissible to use the sim-
ple point-mass relativistic transformation of power to find the integrated self
electromagnetic power of the extended electron in an arbitrarily moving iner-
tial reference frame from its small-velocity value. (This is unfortunate because
the proper-frame and small-velocity values of self electromagnetic force and
power, respectively, are much easier to derive than their arbitrary-frame values
from a series expansion of the Liénard-Wiechert electric fields; see Appendix
A.)

The rigorous derivations of self electromagnetic force and power in Chap-
ter 3 critically confirm the discrepancy between the Lorentz-Abraham force
and power equations of motion. Chapter 4 introduces a more detailed pic-
ture of the Lorentz model of the electron as a charge uniformly distributed
on the surface of a nonrotating insulator that remains spherical with radius
a in its proper inertial reference frame. (The values of the permittivity and
permeability inside the insulating sphere are assumed to equal those of free
space.) Applying the relativistic version of Newton’s second law of motion
to the surface charge and insulator separately, we prove the remarkable con-
clusion of Poincaré that the discrepancy between the Lorentz-Abraham force
and power equations of motion is caused by the neglect of the short-range
polarization forces binding the charge to the surface of the insulator. Even
though these short-range polarization forces need not contribute to the total
self force or rest energy of formation, they add to the total self power an
amount that exactly cancels the discrepancy between the Lorentz-Abraham
force and power equations of motion. Moreover, the power equation of motion
modified by the addition of the power delivered by the binding forces now
transforms relativistically like power delivered to a point mass. With the ad-
dition of Poincaré binding forces, the power equation of motion of the Lorentz
model of the electron derives from the Lorentz-Abraham force equation of
motion, and no longer needs separate consideration.

Of course, Poincaré did not know what we do today about the nature
of these surface forces when he published his results in 1906, so he simply
assumed the necessity of “other forces or bonds” that transformed like the
electromagnetic forces. Also, Poincaré drew his conclusions from the analysis
of the fields and forces of a charged sphere moving with constant velocity;
see Section 4.1. The derivation in Section 4.2 from the relativistic version of
Newton’s second law of motion reveals, in addition to the original Poincaré
stress, both “inhomogeneous” and “homogeneous” surface stresses that are
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required to keep the surface charge bound to the insulator moving with arbi-
trary center velocity. The extra inhomogeneous stress integrates to zero when
calculating the total binding force and power. The extra homogeneous binding
force and power just equal the negative of the time rate of change of momen-
tum and energy needed to accelerate the mass of the uncharged insulator. It
also vanishes when the mass of the uncharged insulator is zero.

The mass of the uncharged insulator should not be confused with the
“bare mass” of the surface charge. Today the bare mass should be viewed as
simply a mathematically defined mass required to make the Lorentz-Abraham
force equation of motion compatible with the relativistic version of Newton’s
second law of motion and the Einstein mass-energy relation. Also, the analysis
in Section 4.2 confirms the original results of Poincaré that the forces binding
the charge to the insulator remove the inconsistency between the Lorentz-
Abraham force and power equations of motion (that is, between self force and
power), but do not remove the 4/3 factor multiplying the electrostatic mass
in the equations of motion or require the momentum-energy to transform as
a four-vector. With the addition of the binding forces, the force-power, but
not the momentum-energy, transforms as a four-vector.

Chapter 5 determines the relationships between the various masses (elec-
tromagnetic, electrostatic, bare, measured, and insulator masses) involved
with the analysis of the classical model of the electron as a charged insu-
lator. Specifically, the Einstein mass-energy relation demands that the mea-
sured mass of the charged insulator equals the sum of the electrostatic mass
and the mass of the uncharged insulator (which can include any mass, posi-
tive or negative, due to gravitational fields and the short-range polarization
forces binding the charge to the insulator, if their contribution to the rest
energy of formation is not negligible). The relativistic version of Newton’s
second law of motion then demands that the momentum of the so-called
bare mass equals the difference between the momentum of the electromag-
netic mass and the electrostatic mass, regardless of the value of the mass of
the insulator. Thus, the final analysis shows what one might expect initially,
namely, that the self force derived from the Maxwell-Lorentz equations deter-
mines the radiation reaction term in the Lorentz-Abraham (or renormalized
Lorentz-Abraham-Dirac) equation of motion but not the correct mass in the
relativistic Newtonian acceleration term (whether or not the Poincaré binding
forces are included).

It is the negative bare mass that removes the 4/3 factor from the elec-
trostatic mass in the Lorentz-Abraham(-Poincaré) equation of motion and
makes the momentum of the charged insulator compatible with the electro-
static rest energy of formation. With the inclusion of both the bare mass
and binding stresses, the momentum-energy as well as force-power transform
as four-vectors. Why Lorentz, Abraham, and the general physics community
assumed as late as 1915 that the bare mass was zero is explained in Sec. 5.1.2.

The final result of the analysis of Chapter 5 is an equation of motion (5.12)
for a charged insulator compatible with the Maxwell-Lorentz equations, the
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relativistic version of Newton’s second law of motion, and the Einstein mass-
energy relation. (The possibility, considered by Dirac, of extra momentum-
energy terms in the relativistic version of Newton’s second law of motion for
charged particles, and the conditions these terms should satisfy, are discussed
in Section 5.1.1.)

Chapter 6 begins by summarizing the transformation properties of the
different force-powers and momentum-energies, and deriving a total stress-
momentum-energy tensor that accounts for the binding forces and bare mass,
as well as the electromagnetic self force for the charged insulator model of
the electron. We then consider the redefinitions of electromagnetic momen-
tum-energy that have been proposed to obtain consistent momentum and
energy equations of motion without introducing specific binding forces and
bare masses. With the exception of the momentum-energy of Schwinger’s
tensors [23], the redefined momentum-energy densities can be found for the
Lorentz model of the electron by multiplying the four-velocity of the center
of the extended charge by an invariant function of the electromagnetic field.
The total momentum-energy of the charge distribution moving with constant
velocity then transforms as a four-vector, and for arbitrary velocity predicts
consistent 1/a terms for the self force and self power, that is, consistent 1/a
terms in the force and power equations of motion. However, these invariant
redefinitions of electromagnetic momentum-energy do not predict the correct
radiation reaction terms in the equations of motion.

Schwinger’s method [23] consists of writing the force-power density as
the divergence of a tensor that depends on the charge-current distribution for
charge moving with constant velocity. This charge-current tensor is subtracted
from the original electromagnetic stress-momentum-energy tensor, to obtain a
divergenceless stress-momentum-energy tensor (when the velocity is constant)
and a total momentum-energy that transforms as a four-vector. This method
produces the correct radiation reaction terms as well as consistent 1/a terms
in the force and power equations of motion for arbitrary velocity. The tensor
resulting from this method is ambiguous to within an arbitrary divergenceless
tensor. Schwinger concentrates on two tensors which, for a thin shell of charge,
are equivalent to the stress-momentum-energy tensor derived for the charged
insulator when the value of the mass of the insulator is chosen equal to zero
and mes/3, where mes is the electrostatic mass.

None of these methods of redefining the electromagnetic momentum-en-
ergy require the removal of the 4/3 factor multiplying the electrostatic mass
in the original equations of motion. They have the drawback for the Lorentz
model of the electron of requiring unknown self force and power (electro-
magnetic or otherwise) that do not equal the Lorentz force and power. Also,
none of the redefined stress-momentum-energy tensors recover the secondary
binding forces necessary to hold the accelerating charge to the surface of the
insulator. Thus, redefining the electromagnetic momentum-energy seems an
unattractive alternative to the deterministic binding forces, bare mass, and
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total stress-momentum-energy tensor derived for the charged-insulator model
of the extended electron.

In Chapter 7, general expressions for the momentum and energy of the
moving charge are derived from the equation of motion. The reversible kinetic
momentum-energy, the reversible Schott acceleration momentum-energy, and
the irreversible radiation momentum-energy are separated in both three and
four-vector notation. After the application of an external force to the charged
particle, all the momentum-energy that has been supplied by the external
force has been converted entirely to kinetic and radiated momentum-energy.
However, while the external force is being applied, the momentum-energy is
converted to Schott acceleration momentum-energy, as well as kinetic and
radiated momentum-energy.

An understanding of the “Schott acceleration momentum-energy” as re-
active momentum-energy may be gained by looking at time harmonic motion
and comparing the energy of the oscillating charge with the reactive energy
of an antenna. It is also confirmed that the conservation of momentum-ener-
gy is not violated by a charge in hyperbolic motion (relativistically uniform
acceleration), or by the homogeneous runaway solutions to the equation of
motion.

By writing the three-vector equation of motion in an especially compact
form, it is proven that the only possible solution to the equation of motion
for relativistically uniform acceleration is rectilinear “hyperbolic motion” of
the charge under a constant externally applied force in some inertial reference
frame. This is the only externally applied force for which the radiation reaction
force is zero and the Lorentz-Abraham-Dirac equation of motion reduces to
the relativistic version of Newton’s second law of motion.

Chapter 8 begins by solving the equation of motion for the extended charge
in rectilinear motion. When one neglects the higher order terms (in radius
a) of the equation of motion, one obtains the well-known pre-acceleration
solution under the two asymptotic conditions that the acceleration approaches
zero in the distant future (when the external force approaches zero in the
distant future) and the velocity approaches zero in the remote past. It is shown
that this pre-acceleration solution, which violates causality, is not a strictly
valid solution to the equation of motion of the extended charge because the
pre-acceleration does not satisfy the requirement that the neglected higher
order terms in a are negligible. Unfortunately, when higher order terms in the
Lorentz-Abraham(-Poincaré) equation of motion are retained, the noncausal
pre-acceleration remains; its time dependence merely changes.

In Section 8.2.1 the root cause of the noncausal pre-acceleration solution is
traced to the assumption in the classical derivation of the self electromagnetic
force that the position, velocity, and acceleration of each element of charge
at the retarded time can be expanded in a Taylor series about the present
time. With a finite external force that is zero for all time less than zero and
yet an analytic function of time about the real t axis for all time greater
than zero, these Taylor series expansions are valid for all time except during
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the initial short time interval light takes to traverse the charge distribution
(0 ≤ t ≤ Δta). It is shown in Section 8.2.2 that when the derivation of the
self force is done properly near t = 0, a correction force fa(t) that is nonzero
only in the “transition interval” [0, Δta] must be included in the equation
of motion.2 This small correction force in the equation of motion removes
the noncausal pre-acceleration from the solution to the equation of motion
without destroying the covariance of the equation of motion. In Section 8.2.3
the correction force fa(t) is determined for rectilinear motion in terms of the
change in the velocity of the charge across the transition interval.

In Section 8.2.4, the corrected equation of motion is applied to the problem
of determining the motion of a charge that is accelerated by a uniform electric
field for a finite time interval, for example, between the parallel plates of a
charged capacitor. With the addition of correction forces fa1(t) and fa2(t)
at the two nonanalytic points of time in the external force (one when the
charge enters the first plate and one when it exits the second plate) both
pre-acceleration and pre-deceleration are eliminated.

Section 8.2.5 reveals that the removal of the noncausal pre-acceleration
and pre-deceleration in the equation of motion comes at a cost. Unless the
magnitude of the externally applied force is bounded by a finite (though ex-
tremely large) value, no change in velocity across the transition intervals can
be chosen to avoid a negative energy radiated during the transition intervals
while maintaining causality. For the charged spherical insulator (extended
model of the electron), this restriction on the magnitude of the external force
is of little concern because it is identical to a proper-frame condition required
for neglecting the terms of higher order in the equation of motion than the
radiation reaction term. However, for the Lorentz-Abraham-Dirac equation of
motion of a point charge (considered in Section 8.5), obtained by letting the
radius of the charge approach zero while renormalizing the mass to a fixed
finite value, the higher order terms vanish. Thus, the Lorentz-Abraham-Dirac
equation of motion of a mass-renormalized point charge corrected by the tran-
sition forces can be made to satisfy causality but at the expense of producing
an unphysical negative radiated energy during the transition intervals if the
externally applied force becomes extraordinarily large.

If one is not concerned with the correct behavior of the solution to the
equation of motion during the time immediately after the external force is
first applied, one can obtain a convenient power series solution to the equa-
2 It is assumed throughout the book that the fundamental equation of motion for a

charged particle is ultimately obtained by equating the sum of the external force
and the radiation reaction part of the self force to the rest mass of the particle
times the relativistic acceleration. During the transition interval this fundamental
equation of motion differs from the equation of motion one would obtain by
equating the sum of the external force and the total self force to a constant “bare
mass” times the relativistic acceleration. This difference is important because it
allows for a causal (no pre-acceleration or pre-deceleration) initial-value solution
to the equation of motion.
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tion of motion. Specifically, power series solutions and conditions for their
convergence are derived in Section 8.3 by the method of successive substitu-
tions for the proper-frame, the rectilinear, and the general equation of motion.
The first two terms of the power series solution to the general equation of mo-
tion are converted to the approximation derived by Landau and Lifshitz [51,
sec. 76] to the Lorentz-Abraham-Dirac equation of motion. For the special
case of a charge moving in a uniform magnetic field, the solution first derived
by Spohn [38] is given for the Landau-Lifshitz approximation to the Lorentz-
Abraham-Dirac equation of motion. This solution emerges in a simple form
convenient for determining the long-term motion of the charge as well as its
change in energy and radius of curvature per unit time. The necessary and
sufficient condition on the magnitude of the applied uniform magnetic field
is found for this Landau-Lifshitz solution to be an accurate approximation to
the exact solution of the Lorentz-Abraham-Dirac equation of motion.

Section 8.4 considers the finite difference equation of motion of the ex-
tended charge that has been proposed as an alternative to the differential
equation of motion. We find that there is little justification to accept the fi-
nite difference equation as a valid equation of motion because it neglects all
nonlinear terms (in the proper frame of the charge) involving products of the
time derivatives of the velocity, and retains a homogeneous runaway solution
that leads to pre-acceleration.

Section 8.5 concentrates on the mass-renormalized or Lorentz-Abraham-
Dirac (LAD) equation of motion for a point charge corrected by the transition
forces to remove noncausal behavior at nonanalytic points in time of the ex-
ternally applied force. For a finite external force that is an analytic function
of time about the real t axis for all t except for a finite number of nonanalytic
points in time, the radiation reaction term in the LAD equation of motion
is exact for all t except during the infinitesimal transition intervals following
the nonanalytic points in time. Thus, the corrected LAD equation of motion
merely equates the sum of the radiation reaction and external forces on a point
charge outside the transition intervals to the relativistic Newtonian accelera-
tion force, and adds delta-function transition forces during the transition inter-
vals to eliminate the noncausal pre-acceleration and pre-deceleration. Unfor-
tunately, as mentioned above, these causal solutions to the mass-renormalized
corrected equation of motion of a point charge can predict an unphysical neg-
ative radiated energy during the transition intervals if the magnitude of the
external force is large enough. Consequently, and quite startlingly, a classical
causal equation of motion of a mass-renormalized point charge that maintains
a non-negative radiated energy during the transition intervals for arbitrarily
large values of the external force must involve a more complicated joining of
the external, radiation reaction, and Newtonian acceleration forces than just
their summation. A fully satisfactory classical equation of motion of a point
charge does not result from the corrected equation of motion for an extended
classical model of a charged particle by simply renormalizing the diverging
mass to a finite value as the radius of the charge is allowed to approach zero.
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Lorentz-Abraham Force and Power Equations

2.1 Force Equation of Motion

Toward the end of the nineteenth century Lorentz modeled the electron (“vi-
brating charged particle,” as he called it) by a spherical shell of uniform sur-
face charge density and set about the difficult task of deriving the equation
of motion of this electron model by determining, from Maxwell’s equations
and the Lorentz force law, the retarded self electromagnetic force that the
fields of the accelerating charge distribution exert upon the charge itself [1].
(This initial work of Lorentz in 1892 on a moving charged sphere appeared
five years before J.J. Thomson’s “discovery” of the electron. It is summarized
in English by J.Z. Buchwald [2, app. 7].) With the help of Abraham,1 a highly
successful theory of the moving electron model was completed by the early
1900’s [3], [4]. Before Einstein’s papers [5], [6] on special relativity appeared
in 1905, they had derived the following force equation of motion

Fext =
e2

6πε0ac2

d
dt

(γu) − e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
u · ü +

3γ2

c2 (u · u̇)2
]
u
}

+ O(a) (2.1)

with

γ =
(
1 − u2/c2)− 1

2 , O(am) ≡
∞∑

n=m

αn(u)an

for a “relativistically rigid” spherical shell of total charge e and radius a,
moving with arbitrary center velocity, u = u(t), and externally applied force
1 Abraham was the first author to obtain the equations of motion in (2.1) and

(2.4) for the charge moving with arbitrary velocity. Nonetheless, I refer to them
as the Lorentz-Abraham (rather than the Abraham-Lorentz) equations of motion
because Lorentz first obtained the proper-frame equation of motion corresponding
to (2.1) many years earlier in 1892 and was the first to propose the relativistically
rigid (contracting) model of the electron.
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Fext(t). The speed of light and permittivity in free space are denoted by c and
ε0, respectively. The rationalized mksA international system of units is used
throughout, and dots over the velocity denote differentiation with respect to
time.

“Relativistically rigid” refers to the particular model of the electron, pro-
posed originally by Lorentz, that remains spherical in its proper (instanta-
neous rest) frame, and in an arbitrary inertial frame is contracted in the
direction of velocity to an oblate spheroid with minor axis equal to 2a/γ.
Lorentz, however, used the word “deformable” to refer to this model of the
electron. (Even a relativistically rigid finite body cannot strictly exist be-
cause it would transmit motion instantaneously throughout its finite volume.
Nonetheless, one makes the assumption of relativistically “rigid motion” to
avoid the possibility of exciting vibrational modes within the extended model
of the electron [7, pp. 131-132].)

The derivation of the differential equation of motion (2.1) requires that the
externally applied force be an analytic function of time (in a neighborhood of
the real time axis) for all time. This is discussed in Chapter 8 when dealing
with the problem of pre-acceleration.

The infinite summation of order a in the equation of motion (2.1) goes to
zero as the radius a approaches zero. For a charged sphere of finite radius a
moving with arbitrary velocity, it is difficult to determine sufficient conditions
on the velocity and its derivatives or on the externally applied force for these
O(a) terms to be negligible. However, the inequalities (8.24) in Section 8.2 give
the conditions on the time derivatives of velocity in the proper inertial frame
of the charged sphere sufficient for neglecting the O(a) terms. Specifically, in
the proper inertial frame it is sufficient that 1) the fractional changes in the
first and higher time derivatives of velocity be small during the time it takes
light to travel across the charge distribution, and 2) the velocity changes by a
small fraction of the speed of light in this time. Alternatively, the inequalities
in (8.90) of Section 8.3 show that the O(a) terms are negligible in the proper
inertial frame if 1) the fractional changes in the externally applied force and
its first and higher time derivatives are small during the time light traverses
the charge, and 2) the external force is not large enough to change the velocity
by a significant fraction of c in this time.

In the original analyses of the Lorentz model of the electron, as well as
throughout this book, it is assumed that the charged sphere moves “without
rotation,” that is, the angular velocity of each point on the sphere is zero
in its proper frame of reference. Nodvik [8] has generalized the derivation of
the classical equation of motion to include rotation. This generalized equa-
tion of motion [8, eq. (7.28)] shows that a finite angular velocity produces a
self electromagnetic force of order a and thus (2.1) remains a valid classical
equation of motion if the charged sphere has a finite angular velocity. (Schott
[9] also investigates the motion of a “spinning” sphere, but he left the general
expressions for the self force and couple in terms of integrals that discourage
a direct comparison with Nodvik’s results.)
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The right-hand side of (2.1) is the negative of the self electromagnetic force
Fem determined by Lorentz and Abraham for the moving charge distribution.
Thus (2.1) expresses Newton’s second law of motion for the shell of charge
when the unknown “bare” mass, or “material” mass as Lorentz called it, in
Newton’s second law of motion is set equal to zero. (With the acceptance of
special relativity [5] and, in particular, the Einstein mass-energy equivalence
relation [6], it is no longer valid to assume, as did Lorentz and Abraham, that
the bare mass is independent of the electrostatic energy of formation, that is,
independent of the total charge e and radius a. We shall return in Chapter 5
to the subject of the bare mass and the question of why Lorentz et al. believed
the bare mass of the electron was negligible.)

Remarkably, the special relativistic factor γ in the time rate of change
of momentum (first term on the right-hand side of (2.1)) and the radiation
reaction part of the self force with coefficient e2/(6πε0c

3) that doesn’t depend
on the size or shape of the charge (second term on the right-hand side of
(2.1)) were both correctly revealed, so that (2.1) is invariant to a relativistic
transformation from one inertial reference frame to another. That is, both
sides of the force equation of motion (2.1) transform covariantly. Moreover,
one could choose the radius a such that the inertial electromagnetic rest mass

mem =
e2

6πε0ac2 (2.2)

equaled the measured rest mass of the electron. (This value of a equals 4/3
times the “classical radius of the electron.”)

2.2 Power Equation of Motion

As long as Lorentz and Abraham limited themselves to the derivation of the
force equation of motion (2.1), they saw no inconsistencies in the Lorentz
model of the electron. Lorentz was unconcerned with the terms of order a
that are neglected in the self force because he assumed the predicted radius of
the electron was both realistic and small enough that only the “next term of
the series [the radiation reaction term in (2.1)] makes itself felt” [4, sec. 37].

Lorentz and Abraham were also unconcerned with the electromagnetic
mass mem in (2.1) equaling 4/3 the electrostatic mass mes, defined as the
energy of formation of the spherical charge divided by c2

mes =
e2

8πε0ac2 (2.3)

because they derived the equation of motion (2.1) before Einstein’s 1905 pa-
pers on relativistic electrodynamics [5] and the mass-energy relation [6]. In
neither of the original editions of their books [3], [4] do they mention the 4/3
factor in the inertial electromagnetic mass of (2.1) being incompatible with
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the electrostatic energy of formation, or, conversely, the energy of formation
of the electron having to equal c2 times the inertial electromagnetic mass.2

In 1904, however, Abraham [10], [3, secs. 15 and 22], [4, sec. 180] derived
the following power equation of motion for the Lorentz relativistically rigid
model of the electron by determining from Maxwell’s equations the time rate
of change of work done by the internal electromagnetic forces (self electro-
magnetic power)

Fext · u =
e2

6πε0a

d
dt

(
γ − 1

4γ

)
− e2γ4

6πε0c3

[
u · ü +

3γ2

c2 (u · u̇)2
]

+ O(a) (2.4)

with

O(am) ≡
∞∑

n=m

αn(u)an.

As Abraham and Lorentz pointed out, the power equation of motion (2.4) is
not consistent with the force equation of motion (2.1). Specifically, taking the
scalar product of the center velocity u with equation (2.1) gives

Fext · u =
e2

6πε0a

dγ

dt
− e2γ4

6πε0c3

[
u · ü +

3γ2

c2 (u · u̇)2
]

+ O(a) (2.5)

which differs from (2.4) by the term

− e2

24πε0a

d
dt

(
1
γ

)
. (2.6)

This is the discrepancy between the force equation of motion and the power
equation of motion for the Lorentz model that concerned Abraham and
Lorentz, namely, that the scalar product of u with the time rate of change of
the electromagnetic momentum did not equal the time rate of change of the
work done by the internal electromagnetic forces.

Unlike the force equation of motion (2.1), the left- and right-hand sides
of the power equation of motion (2.4) do not transform covariantly; see Ap-
pendix A. Moreover, neither the force-power on the right-hand sides of (2.1)
and (2.4) nor the momentum-energy transforms as a four-vector; see Section
6.1. (Lorentz and Abraham did not mention and were probably not aware of
this noncovariance because these equations were discussed outside the gen-
eral framework and without the correct velocity transformations of special
relativity; compare [11] with [5].)

After the derivation of (2.4), they still saw no problem with the 4/3 factor
in the inertial electromagnetic mass, nor with the conventional electromag-
netic momentum-energy per se (before taking the time derivative) failing to

2 The second edition (1908) of Abraham’s book added to the first edition [3] a
discussion of the theory of relativity and a section 49 in which he mentions the
4/3 factor.
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transform as a relativistic four-vector. Moreover, if one rewrites the Lorentz-
Abraham equation of motion (2.1) in four-vector notation

F i
ext =

e2

6πε0a

dui

ds
− e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)
+ O(a) (2.7)

one recovers equation (2.1) and (2.5) from (2.7) and misses entirely the dis-
crepancy introduced by the power equation of motion (2.4) derived from
Maxwell’s equations by Abraham. If the mass in (2.7) is “renormalized”
to a finite value as the radius of the charge approaches zero and the O(a)
terms vanish, then (2.7) becomes identical to the Lorentz-Abraham-Dirac
equation of motion [12], [13]; see Section 8.5. Apparently, the radiation re-
action, [e2/(6πε0)][d2ui/ds2 +ui(duj/ds)(duj/ds)], in the equation of motion
was first written in four-vector form by von Laue [14]. Early use of the four-
vector notation for the radiation reaction in the equation of motion (2.7) can
be found in Pauli’s article on relativity theory [7, sec. 32]. Herein we use
the four-vector notation of Panofsky and Phillips [13], who normalized the
four-velocity to be dimensionless.

Throughout this book the entire von Laue term is referred to as the “ra-
diation reaction” rather than just the ui(duj/ds)(duj/ds) part of this term.
That is, the “Schott term” (d2ui/ds2 term) is considered part of the radia-
tion reaction. Only then does the “radiation reaction” in an arbitrary inertial
frame reduce to the original ü radiation reaction term (see (3.3)) derived by
Lorentz in the proper (u = 0) inertial frame of the charged sphere.
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Derivation of Force and Power Equations

The inconsistency between the power and force equations of motion, (2.4) and
(2.1) or (2.5), is so surprising that one is tempted to question the Lorentz-
Abraham derivation ([10], [3, secs. 15 and 22], [4, sec. 180]) of (2.1) and (2.4).
Thus, let us take a careful look at their method of derivation.

The right-hand side of (2.1) is the negative of the self electromagnetic
force, Fem, and the right-hand side of (2.4) is the negative of the work done
per unit time, Pem, by the internal electromagnetic forces (self electromagnetic
power) on the moving shell of charge; specifically

Fem(t) =
∫

charge

ρ(r, t)[E(r, t) + u(r, t) × B(r, t)]dV = − d
dt

ε0

∫
all space

E × BdV (3.1)

Pem(t) =
∫

charge

ρ(r, t)u(r, t) · E(r, t)dV = − d
dt

ε0
2

∫
all space

(E2 + c2B2)dV (3.2)

where ρ(r, t) and u(r, t) are the density and velocity of the charge distribution
in the shell, and E(r, t) and B(r, t) are the electric and magnetic fields pro-
duced by this moving charge distribution. The magnetic field does not appear
in the first integral of (3.2) because the magnetic force is perpendicular to the
velocity. (Some authors refer to the radiation reaction term alone in (2.1) or
(2.4) as the self force or self power, respectively. However, this seems unde-
sirable because (3.1) and (3.2) clearly define the Lorentz self electromagnetic
force and power, and they are equal to the negative of the right-hand side of
(2.1) and (2.4), respectively.)

The second equations in (3.1) and (3.2) are, of course, identities derived
from Maxwell’s equations, assuming there are no radiation fields beyond a
finite distance from the charge distribution [15, sec. 2.5, eq.(25) and sec. 2.19,
eq.(6)].

For the Lorentz relativistically rigid model of the electron, the charge den-
sity and velocity of each part of the shell cannot be the same for an arbitrarily
moving shell if the shell is to maintain its spherical shape and uniform charge
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density in its proper frame of reference (inertial frame at rest instantaneously
with respect to the center of the electron). In particular, the relativistic con-
traction of the moving Lorentz model of the electron, from a spherical to an
oblate spheroidal shell, demands that the velocity of its charge distribution
cannot be uniformly equal (except in the proper frame) to the velocity of the
center of the shell denoted simply by u = u(t) in our previous equations (see
Appendix A). If u(r, t) did not depend on the position r within the shell, as
in Abraham’s noncontracting (nonrelativistically rigid) model of the electron
[3], u(r, t) could be brought outside the charge integrals in (3.1) and (3.2),
Pem would equal Fem ·u, and the discrepancy (2.6) between (2.4) and (2.5) or
(2.1) would vanish. Such a model is unrealistic because it would have a sin-
gle preferred inertial frame of reference in which it were spherical (with fixed
radius a) and its major axis would stretch to an infinite length in its proper
frame when its velocity with respect to the preferred frame approached the
speed of light.

Still we can ask if the variable velocity in the charge integrals of (3.1) and
(3.2) for the Lorentz model of the electron actually produces the discrepancy
(2.6) between equations (2.4) and (2.5) or (2.1). For a charge with velocity
other than zero, both Abraham and Lorentz derived the first terms on the
right-hand sides of (2.1) and (2.4), the terms in question, not from the charge
integrals in (3.1) and (3.2) but by evaluating the momentum and energy inte-
grals (second integrals) in (3.1) and (3.2) for a charge moving with constant
velocity with respect to time, then differentiating the resulting functions of
velocity with respect to time [3, sec. 22], [4, sec. 180]. We know that falsely
setting the charge velocity u(r, t) independent of r in the first integrals of (3.1)
and (3.2) eliminates the discrepancy (2.6). Therefore, is it really justifiable,
as Lorentz [4, sec. 183] and Abraham [3, sec. 23] argue, to assume a charge
velocity constant in time in the second integrals of (3.1) and (3.2) to derive the
first terms of (2.1) and (2.4), the terms that produce the discrepancy (2.6)?

Apparently, this question was not decided with certainty until the work of
Schott [16] who derived both the force and power equations of motion, (2.1)
and (2.4), by evaluating directly the integrals in (3.1) and (3.2) over the charge
distribution for the Lorentz model of the electron moving (without rotation)
with arbitrary center velocity u . In particular, his evaluation of the charge
integral in (3.2) indeed yielded the power equation of motion (2.4) to prove
that the discrepancy (2.6) with the force equation of motion (2.1) actually
existed. In fact, Schott’s book appears to be the first reference in which either
the force or power equation of motion can be found in the general form of (2.1)
and (2.4). To obtain these equations from the work of Lorentz and Abraham,
one has to piece together the results of a number of their papers or various
sections of their books (e.g., secs. 28, 32, 37, 179, and 180 of [4] plus secs. 15
and 22 of [3]).

Schott’s derivations of the force and power equations of motion, (2.1) and
(2.4), from the charge integrals of (3.1) and (3.2) involve extremely tedious ma-
nipulations of the double integrations of the Liénard-Wiechert potentials for
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an arbitrarily moving charge distribution. They are so involved that Schott’s
rigorous approach to the analysis of the Lorentz model of the electron has
not appeared or been repeated, as far as I am aware, in any subsequent re-
view or textbook. Page [17] also derives the force equation of motion (2.1)
by evaluating and integrating directly the self electromagnetic fields over the
charge distribution. However, Page’s derivation does not show explicitly the
variation in velocity of the charge distribution throughout the shell, and thus
it cannot be used to derive the power equation of motion (2.4).

3.1 General Equations of Motion from Proper-Frame
Equations

Lorentz also derived the force equation of motion from the charge integral for
electromagnetic force in (3.1) by means of a double integral of the Liénard-
Wiechert potentials, but only in the proper frame of the electron where the
velocity of the charge is zero and the derivation simplifies greatly to yield the
well-known result [4], [13] (derived in Appendix A)

Fext =
e2

6πε0ac2 u̇ − e2

6πε0c3 ü + O(a), u = 0 (3.3)

to which the general force equation of motion reduces when the velocity u
in (2.1) is set equal to zero or when (u/c)2 � 1. (Equation (3.3) was first
derived in 1892 [1] for a charged sphere even though the electron had not
been officially “discovered” by J.J. Thomson until 1897.)

For a velocity much less than the speed of light, a derivation performed
in Appendix A, similar to Lorentz’s derivation of (3.3), but applied to the
charge integral for electromagnetic power in (3.2), yields the small-velocity
power equation of motion

Fext · u =
5e2

24πε0ac2 u · u̇ − e2

6πε0c3 u · ü + O(a), (u/c)2 � 1 (3.4)

to which the general power equation of motion (2.4) reduces when only the
first order terms in u/c are retained. Note once again that the scalar product
of u with the force equation (3.3) does not yield the power equation (3.4).
Section A.1.2 of Appendix A shows explicitly that the variation of the velocity
over the charge distribution, even for (u/c)2 � 1, must be taken into account
to derive the correct expression (3.4) for the small-velocity electromagnetic
power.

Now equations (3.3) and (3.4) raise an important question. Since the force
and power equations of motion, (3.3) and (3.4), are derived rigorously from
(3.1) and (3.2) for u approaching zero, why not simply apply the relativistic
transformation to the velocity, its time derivatives, and the external force in
(3.3) and (3.4) to obtain the general equations of motion (2.1) and (2.4) in an
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arbitrary frame. Thereby, one would avoid the difficult evaluation of the self
force and power directly from (3.1) and (3.2) for a relativistically rigid shell
of charge moving with arbitrary center velocity u .

Indeed a relativistic transformation of u̇, ü, and Fext in the proper-frame
force equation of motion (3.3) produces the general force equation of motion
(2.1) [14], [18], [7]. However, the same relativistic transformations applied to
(3.4) produce the equation (see Appendix A)

Fext · u =
5e2

24πε0a

dγ

dt
− e2γ4

6πε0c3

[
u · ü +

3γ2

c2 (u · u̇)2
]

+ O(a) (3.5)

which does not agree with either the general power equation of motion (2.4)
or the equation (2.5) obtained from the scalar product of u with the force
equation of motion (2.1).

This apparent paradox is explained by returning to (3.1) and (3.2). Since
the self force Fem and self power Pem in (3.1) and (3.2) are quantities obtained
by integrating over a finite distribution of charge and are not the force and
power applied to a point mass, it is not valid to apply the point relativistic
transformations of force and center velocity (and derivatives of velocity) to
determine the general values of the integrals in (3.1) and (3.2) from their
proper-frame or small-velocity values. For the force equation of motion, the
integrated self force (3.1) maintains the transformation properties of a point
force, and thus the point relativistic transformations can still be applied to
obtain the general integrated self force (3.1) in an arbitrary inertial frame from
its proper-frame value on the right-hand side of (3.3). (Unfortunately, one
proves this fact by performing the difficult evaluation of (3.1) in the arbitrary
inertial frame.) For the power equation of motion, however, the integrated
power (3.2) does not transform as the time rate of change of energy of a
moving point mass (see Appendix A), even as the radius of the charged shell
approaches zero, and thus the point relativistic transformations applied to
the small-velocity power (right-hand side of (3.4) as u → 0) do not give the
correct value of the power in an arbitrary inertial frame (right-hand side of
(2.4)).

From the viewpoint of the electromagnetic stress-momentum-energy ten-
sor (discussed in Chapter 6), it is not surprising that the power equation of
motion does not transform covariantly, because the electromagnetic stress-
momentum-energy tensor of a charged shell is not divergenceless and the
electromagnetic momentum-energy does not transform as a four-vector.

In summary, then, since the point relativistic transformations do not nec-
essarily apply to an integrated force or power (and the electromagnetic stress-
momentum-energy tensor is not divergenceless), it is not mathematically rig-
orous to use these transformations to find the integrated self force and power,
(3.1) and (3.2), in an arbitrarily moving inertial reference frame from their
proper-frame or small-velocity expressions (3.3) and (3.4). Moreover, as ex-
plained above, the classic Lorentz-Abraham derivation of (2.1) and (2.4) for
arbitrary u also lacks rigor because it depends upon the evaluation of the
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momentum and energy of a shell of charge moving with constant, rather than
arbitrary time varying velocity. Thus, it appears that Schott’s book [16] con-
tains the only rigorous derivation to date of both the force equation of motion
(2.1) and the power equation of motion (2.4).

Since this highly commendable derivation by Schott is also extremely te-
dious and difficult to repeat or check, a much shorter, simpler, yet rigorous
derivation of the self electromagnetic force and power is given in Appendix
B by applying the relativistic transformations of the electromagnetic fields at
each point within the arbitrarily moving shell of charge before performing the
integrations in (3.1) and (3.2). (All these derivations depend upon expanding
the position, velocity, and acceleration of each element of the charge at the
retarded time in a power series about the present time. When the external
force is applied at t = 0, having been zero for t < 0, these series expansions
are invalid between t = 0 and t = Δta, the short time interval it takes light to
traverse the charge distribution. In Section 8.2 it is shown that the addition of
a transition correction force during this short time interval [0, Δta] eliminates
the noncausal pre-acceleration from the solution to the uncorrected equation
of motion.)



4

Internal Binding Forces

In Appendix B, we have critically confirmed the evaluation of the self elec-
tromagnetic force and power, (3.1) and (3.2), leading to the force and power
equations of motion (2.1) and (2.4). Yet (2.1) and (2.4) are inconsistent, since
taking the scalar product of u with (2.1) gives (2.5), which differs from (2.4)
by the term (2.6). Not only the self electromagnetic momentum-energy but
also the self electromagnetic force-power fails to transform as a four-vector.
What has gone wrong?

To see clearly the problem and its resolution, it helps to divorce the analysis
of the moving spherical shell of charge from the question of whether it models
the electron. The analysis is based entirely upon classical fields, forces, and
charges, and the extent to which it describes the internal structure of the
electron is irrelevant to the question of the inconsistency between the force
equation of motion (2.1) and the power equation of motion (2.4). We could
enter our classical laboratory, distribute a charge uniformly on the surface
of an arbitrarily small, massless (or nearly massless), “relativistically rigid,”
insulating sphere, accelerate this charged sphere, and, assumably, get consis-
tent results between the force that is required to accelerate the sphere and
the power delivered to the sphere.

4.1 Poincaré Binding Forces

Poincaré visualized such a model in his 1906 paper on the dynamics of the
electron [19]. (Actually, Poincaré [19, sec. 6] mentions the charge distributed
on a conductor rather than an insulator. We choose the insulator model to
avoid the possibility of the charge redistributing itself when the sphere moves.
Also, we assume that the values of the relative permittivity and permeability
within the spherical insulator are equal to unity so that there is free-space
propagation of electromagnetic waves inside as well as outside the sphere.)
He argued that the only way the charge could remain on the sphere was for
there to exist binding forces exerted on the charge by the insulator that would
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exactly cancel the repulsive portion of the electromagnetic forces. These in-
ternal binding forces are not optional, they are necessary in a stable classical
Lorentz model. They are the short-range polarization1 forces that must exist
at the surface of the insulator to hold the excess charge to the surface. Al-
though Poincaré did not have today’s knowledge of the nature of the internal
binding forces, he assumed they existed. To quote the English translation of
Poincaré, “Therefore it is indeed necessary to assume [in the Lorentz model]
that in addition to electromagnetic forces [of the excess charge alone], there
are other forces or bonds” [19, sec. 1].

Thus the total force exerted on the charge in both the force and power
equations of motion, (2.1) and (2.4), must include these internal binding forces
(which, for the insulator model, are also electromagnetic in origin) as well as
the internal electromagnetic forces of the excess charge.

For a stationary charged sphere, as Poincaré explained, the binding forces
exerted by the relativistically rigid insulator on the excess charge must be
equal and opposite the repulsive electromagnetic forces produced by the ex-
cess charge distribution. However, in order to include the binding forces in the
force and power equations of motion, one has to know the value of the binding
forces for an arbitrarily moving shell of charge. Poincaré determined the inter-
nal binding forces on a moving shell by assuming a “postulate of relativity”,
namely that the “impossibility of experimentally demonstrating the absolute
movement of the earth would be a general law of nature”; and, in particular,
hypothesized with Lorentz [11, sec. 8] that the internal forces in the Lorentz
model would obey the same transformations that Maxwell’s equations implied
for the electromagnetic forces [19, Introduction]. (Poincaré did not have the
benefit of Einstein’s relativity papers [5], [6] when he submitted his paper [19]
in July 1905, or the knowledge that the binding forces could be short-range
polarization forces of electromagnetic origin.)

As a consequence of this latter hypothesis, Poincaré drew a startling con-
clusion. The internal binding forces that canceled the internal self electrostatic
forces of the excess charge on the sphere at rest, when transformed to a mov-
ing shell, would not contribute to the total self force on the moving charge
but would contribute to the total time rate of change of energy (power) de-
livered to the charge in the Lorentz model of the moving charge. Specifically,
when Poincaré assumed with Lorentz that the spherical shell compressed to
the shape of an oblate spheroid in the direction of its velocity by a factor of√

1 − u2/c2, the time rate of change of the binding self energy just canceled
the discrepancy (2.6) in the power equation of motion (2.4).

To see how Poincaré arrived at this remarkable result, begin with the
electrostatic force per unit surface charge
1 The surface forces that bind the excess charge to the surface of the spherical

insulator can be regarded classically as resulting from electric polarization induced
at the surface of the insulator material; see Section 4.2.1.
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f0
em =

e

8πε0a2 r̂ (4.1)

for a stationary sphere of radius a and total charge e. The binding force per
unit charge required to hold the charge on the stationary sphere is then given
by the negative of f0

em or
f0
b = − e

8πε0a2 r̂ . (4.2)

Now let the charged sphere move with a constant velocity u and contract in the
direction of u to an oblate spheroid with minor axis equal to a

√
1 − u2/c2 =

a/γ. The Lorentz force law and Maxwell’s equations applied to this moving
oblate spheroid predict that the electrostatic force per unit charge in (4.1)
and thus the binding force per unit charge in (4.2) transforms to

fb = f0
b‖ + f0

b⊥/γ (4.3)

where the subscripts, ‖ and ⊥, refer to the three-vector components parallel
and perpendicular to the velocity u. The transformed binding force in (4.3)
is directed along the normal into the surface of the oblate spheroid.

The binding force per unit charge (4.3) integrated over the surface charge
of the oblate spheroid, because of its symmetry, gives a total binding force Fb
equal to zero as in the case of the stationary sphere, that is

Fb =
∫

charge

fbde =
∫

charge

(
f0
b‖ + f0

b⊥/γ
)

de = 0 . (4.4)

However, the work taken by the binding forces from the charge distribution
as the charge accelerates from zero to velocity u, if we can assume (4.3) is
valid for the accelerating charge as well as the charge moving with constant
velocity, would be

Wb = −
∫

charge

⎡
⎢⎣

a(cos θ)/γ∫
a cos θ

fb · dr‖

⎤
⎥⎦de = −

∫
charge

⎡
⎢⎣

a(cos θ)/γ∫
a cos θ

f0
b · dr‖

⎤
⎥⎦de (4.5)

where θ is the angle between the position vector r to the element of charge de
and the velocity u. The charge element de can be expressed as the product of
the surface charge density on the sphere (e/(4πa2)) and the projection of the
surface area element of the sphere onto the plane perpendicular to u

de =
e

4πa2

dA⊥
cos θ

. (4.6)

From (4.2), the integrand of (4.5) can be rewritten as

f0
b · dr‖ = − e

8πε0a2 cos θ dr‖ . (4.7)
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Substitution of (4.6) and (4.7) into (4.5) gives

Wb =
e2

32π2ε0a4

∫
sphere

⎡
⎢⎣

a(cos θ)/γ∫
a cos θ

dr‖

⎤
⎥⎦dA⊥ = − e2

32π2ε0a4

sphere∫
spheroid

dV (4.8)

or

Wb =
e2

24πε0a

(
1
γ

− 1
)

. (4.9)

Equations (4.8) and (4.9) reveal that the work taken by the internal binding
forces as the spherical charge distribution accelerates and contracts to the
shape of an oblate spheroid is the same as the work taken by a constant
pressure, e2/(32π2ε0a

4), on a sphere that is compressed to an oblate spheroid.
In the words of the English translation of Poincaré, “I have attempted to
determine this force, and I found that it can be compared to a constant
external pressure acting on the deformable and compressible electron, the
work of which is proportional to the variations of the volume of this electron”
[19, Introduction].

The negative of the time derivative of (4.9) determines the work done per
unit time, Pb, by the internal binding forces on the moving charge

Pb = − e2

24πε0a

d
dt

(
1
γ

)
(4.10)

that must be subtracted from the right-hand side of the power equation of mo-
tion (2.4). Comparing (4.10) with (2.6), we see, as Poincaré did, that the time
rate of change of the work done on the charge by the binding force required to
keep the charge on the insulator just cancels the discrepancy (2.6) in power
between the power equation of motion (2.4) and the force equation of mo-
tion (2.1). As (4.4) shows, the Poincaré binding forces do not alter, however,
the total force on the charge distribution, and thus the force equation of mo-
tion (2.1), including the 4/3 factor multiplying the electrostatic mass (2.3),
remains unaffected by the Poincaré binding forces. Neither does the power
(4.10) delivered by the Poincaré binding forces remove the 4/3 factor from the
power equation of motion (2.4), nor do these binding forces change the rest
energy of the charged sphere because Wb in (4.9) vanishes when u is zero. Of
course, when the charge is first placed on the insulator, the short-range at-
tractive polarization forces holding the charge to the insulator may contribute
a negative work of formation to the charge that can subtract from the total
rest mass of the charge. The negative mass contributed by these short-range
polarization forces binding the charge to the insulator and by other possible
attractive forces such as gravity or the short-range forces holding the insula-
tor material together will be included as part of the uncharged insulator mass
mins introduced in the next section.
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4.2 Binding Forces at Arbitrary Velocity

The formulation and integrations of the Poincaré binding forces in the previ-
ous section are based on the fields and forces of charges in uniform motion.
It is uncertain that these results obtained assuming a constant velocity are
valid for a shell of charge moving with arbitrary velocity, especially when tak-
ing the time derivative of (4.9) to determine the contribution (4.10) of the
internal binding forces to the power equation of motion. Thus, we shall de-
rive the polarization binding forces needed to keep the charge on an insulator
moving with arbitrary velocity, assuming that the charge remains uniformly
distributed on the spherical insulator in its proper inertial frame of reference.
(Incidentally, the question raised by Abraham and Lorentz [4, sec. 182] of
what keeps the electron in stable equilibrium can be answered for the charged
insulator model as the nonclassical energy configurations keeping the insu-
lating material and excess charge “rigid” in the proper reference frame; see
Section 4.2.1.)

Consider the shell of total charge e in its proper frame as a uniform distri-
bution of volume charge density located between the radius a and a+δ, where
δ is the infinitesimally thin thickness of the spherical shell (see Fig. 4.1). At

Fig. 4.1. Lorentz model of the electron viewed in its proper frame
[u(r, t) = 0, u̇(r, t), ü(r, t) . . . . �= 0].

the one instant of time t in its proper frame, the velocity u(r, t) of the charge
at every position r within the shell is zero, but the acceleration u̇(r, t) and
higher time derivatives of velocity are not necessarily zero nor independent of
position r within the shell.

In Appendix C we determine the internal electric and magnetic fields in
the proper frame of the accelerating shell of charge, and, in particular, find
the self electromagnetic force per unit charge within the shell to equal
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fem(r, t) =
e

4πε0

[
(r − a)

δa2 r̂ − 2u̇
3ac2 +

2ü
3c3

+
4

5c4 r̂ ·
(
u̇u̇ − Ī

3
|u̇|2
)]

+ O(a), u = 0 . (4.11)

(In (4.11), as throughout, when u and its time derivatives are written without
the explicit functional dependence (r, t), they refer to the velocity and its time
derivatives of the center of the shell.)

The force on any volume element of charge in the shell is the sum of the
externally applied force, the internal electromagnetic force, and the internal
binding force on that element. From Newton’s second law of motion, we as-
sume the sum of these three forces equals an unknown “bare” mass of that
charge element multiplied by the acceleration (see Section 5.1). Specifically

fext(r, t) + fem(r, t) + fb(r, t) =
M0

e
u̇(r, t), u = 0 (4.12)

where fext(r, t), fem(r, t), and fb(r, t) are the external, internal self electromag-
netic, and internal binding forces per unit charge, respectively, at the position
r in the shell at the instant of time t in the proper frame (u(r, t) = u(t) = 0).

The so-called bare mass M0, which Lorentz set equal to zero, should not
be associated with the uncharged mass of the insulator on which the charge is
placed. In principle, the mass of the insulator can be made negligible, but M0
on the right-hand side of (4.12) is dependent upon the charge despite its tra-
ditional label as “bare” mass. The following derivation shows that the binding
force is independent of the value of the bare mass M0. (The determination of
the mass M0 and the reason Lorentz thought it was negligible are discussed
in Section 5.1.)

In (4.12) we assume the bare mass M0 of the charge is uniformly distrib-
uted with the charge in its proper frame so that the bare mass per unit charge
at each point in the spherical shell is M0/e. Similarly, we shall assume that
the variation of the external force is negligible over the charge distribution so
that it is applied uniformly (to order a) throughout the proper-frame shell,
that is

fext(r, t) =
Fext(t)

e
+ O(a) . (4.13)

As a consequence of the shell remaining spherical in its proper inertial frame
of reference, we have from equation (A.8) of Appendix A that the acceleration
u̇(r, t) of the charge element at r is related to the acceleration, u̇ = u̇(t), of
the center of the nonrotating shell by the formula

u̇(r, t) = u̇ − a

c2 (r̂ · u̇)u̇ + O(a2) . (4.14)

Inserting the external force (4.13), the internal self electromagnetic force
(4.11), and the acceleration from (4.14) into the equation (4.12), we obtain
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Fext

e
−
(

e

6πε0ac2 +
M0

e

)
u̇ +

e

6πε0c3 ü + fb(r, t)

= −e(r − a)
4πε0δa2 r̂ − e

5πε0c4 r̂ ·
(
u̇u̇ − Ī

3
|u̇|2
)

+ O(a), u = 0. (4.15)

Next, integrate (4.15) over the entire charge on the shell to get

Fext−
(

e2

6πε0ac2 + M0

)
u̇+

e2

6πε0c3 ü+
∫

charge

fb(r, t)de+O(a) = 0, u = 0 (4.16)

since the integral of r̂ over the uniform spherical charge distribution is zero.
Divide (4.16) by the total charge e and subtract the result from (4.15) to show
that the binding force has to satisfy the equation

fb(r, t) − 1
e

∫
charge

fb(r, t)de

= −e(r − a)
4πε0δa2 r̂ − e

5πε0c4 r̂ ·
(
u̇u̇ − Ī

3
|u̇|2
)

+ O(a), u = 0. (4.17)

The most general solution to (4.17) can be found by letting the binding force
equal the right-hand side of (4.17) plus an homogeneous solution fbh(r, t)

fb(r, t) = −e(r − a)
4πε0δa2 r̂ − e

5πε0c4 r̂ ·
(
u̇u̇ − Ī

3
|u̇|2
)

+ fbh(r, t) + O(a), u = 0 . (4.18)

Substituting fb(r, t) from (4.18) into (4.17) and again noting that the inte-
gral of r̂ over the charge distribution is zero, one sees that the homogeneous
solution must satisfy the condition

fbh(r, t) =
1
e

∫
charge

fbh(r, t)de . (4.19)

The right-hand side of (4.19) is not a function of position r, so the left-hand
side, fbh(r, t), cannot be a function of r, that is

fbh(r, t) = fbh(t) (4.20)

and (4.19) reduces to an identity.
Since we have proven that the homogeneous solution fbh for the binding

force is independent of the position of the charge element within the shell, it
does not average to zero when integrated over the charge unless it is identi-
cally zero. This homogeneous binding force is exerted on the insulator in the
opposite direction. Specifically, if the rest mass of the uncharged insulator is
mins (assumed uniformly distributed over the sphere), fbh is given simply as
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fbh(t) = −mins

e
u̇ (4.21)

from Newton’s second law of motion applied to the insulator in its proper
frame. (The inhomogeneous binding force in (4.18) is also exerted in the op-
posite direction on the insulator but because its total integrated value is zero
it does not contribute to the acceleration of the rigid insulator.) With the
addition of the homogeneous binding force (4.21), the binding force (4.18) per
unit charge needed to keep the charge on the moving insulator is given by

fb(r, t) = −e(r − a)
4πε0δa2 r̂ − e

5πε0c4 r̂ ·
(
u̇u̇ − Ī

3
|u̇|2
)

− mins

e
u̇ + O(a), u = 0 . (4.22)

Equation (4.22) shows that the binding force is independent of the bare mass
M0.

The first term on the right-hand side of (4.22), when integrated over the
thickness of the shell of charge, produces the static binding force (4.2) per
unit charge given by Poincaré [19].

The second term on the right-hand side of (4.22) is a binding force that
does not appear in Poincaré’s analysis using a charged shell moving with
constant velocity. It is required to cancel the self electromagnetic acceleration
forces in (4.11) that vary with position r about the shell.

The third term on the right-hand side of (4.22) accounts for the force
exerted on the charge to accelerate the mass of the uncharged insulator. If
the short-range polarization forces binding the charge to the insulator, or
gravitational fields [20], [21], or other attractive forces such as those that hold
the insulator material together contribute to the rest energy of formation, this
mass can be included in the mass mins of the uncharged insulator.

When we integrate the force per unit charge in (4.22) over the shell, the
first two terms on the right-hand side of (4.22) vanish to give a total binding
force equal to the homogeneous binding force

Fb =
∫

charge

fb(r, t)de = minsu̇ + O(a), u = 0 (4.23)

needed to accelerate the insulator in the proper frame. Furthermore, because
the first two terms of the internal binding force (4.22) at every point within
the charge shell equal the negative of the internal electromagnetic force (4.11),
except for the terms in (4.11) that are independent of r̂, the analyses in Appen-
dices A and B can also be applied to these internal binding forces to obtain the
total binding force and the total power delivered to the charge by the binding
forces in an arbitrary frame of reference. In particular, the generalization of
the second term on the right-hand side of (4.22) to an arbitrary inertial frame
integrates to zero when finding the total binding force, and leads to a term of
order a when finding the total power delivered to the charge by the binding
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forces. The first term on the right-hand side of (4.22) also integrates to zero
in an arbitrary inertial frame but contributes to the power delivered to the
charge by the amount given in (2.6) or (4.10) when multiplied by the velocity
u(r, t) and integrated over the charge. And, of course, the third term in (4.22)
generalizes immediately to −minsd(γu)/dt, which contributes −minsc

2dγ/dt
to the power delivered to the charge.

Thus, the total binding force and power, contributed by the rigorously
derived internal binding force per unit charge needed to keep the charge on
an insulator moving with arbitrary velocity, are identical to those given in
(4.4) and (4.10) by Poincaré (for a massless insulator, mins = 0) using binding
forces inferred from the fields and forces of a charge distribution moving with
constant velocity, that is

Fb(t) =
∫

charge

fb(r, t)de = −mins
d(γu)

dt
+ O(a), u = 0 (4.24a)

Pb(t) =
∫

charge

fb(r, t) ·u(r, t)de = − e2

24πε0a

d
dt

(
1
γ

)
−minsc

2 dγ

dt
+O(a). (4.24b)

Recall that the velocity u(r, t) for each portion of the charge distribution
cannot equal the velocity u(t) of the center of the shell (except when u(t) = 0)
if the shell is to remain spherical in its proper frame of reference (see Appendix
A). Thus u(r, t) in the charge integral of (4.24b) cannot be taken outside the
integral sign. Also, we rely on the indirect procedures of Appendices A and
B to determine the charge integrals in (4.24) for an arbitrarily moving shell,
rather than transform the proper-frame binding force per unit charge (4.22)
to obtain the general binding force per unit charge fb(r, t) in an arbitrary
inertial frame. The reason for this indirect procedure is that (4.22) holds for
different spatial points within the shell at one instant of time only in the
proper frame, but the relativistic transformation of (4.22) to an arbitrary
inertial frame for different spatial points within the shell requires the force
over an interval of time in the original (proper) frame of reference, even as
the radius a approaches zero, because of the 1/a2 term in (4.22).

Equations (4.24a) and (4.24b) critically confirm that the rigorously derived
binding forces for charge on a relativistically rigid insulator moving with ar-
bitrary center velocity, like the original Poincaré binding forces (4.2), remove
the discrepancy (2.6) between the power equation of motion (2.4) and the
force equation of motion (2.1), while having no effect (except for the addition
of the mass of the uncharged insulator) on the force equation of motion (2.1),
or the 4/3 factor in the electromagnetic mass. With the addition of the bind-
ing stresses to the self electromagnetic stresses, the force-power, but not the
momentum-energy, transforms as a four-vector; see Section 6.1.
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4.2.1 Electric Polarization Producing the Binding Forces

One can find a particular polarization at the surface of the insulator that will
produce the static binding forces derived in the previous section. When the
charge is at rest, the electric field for the binding forces is given by the first
term of (4.18) within the shell of charge (a < r < a + δ) and zero everywhere
else. An electric polarization that would produce this internal binding electric
field is given simply by a radial polarization density, P(r), within the thin
shell of charge proportional to the binding electric field

P(r) =

⎧⎨
⎩

e(r − a)
4πδa2 r̂ , a < r < a + δ

0 , a + δ < r < a .

(4.25)

The total electric field, ET(r), is the sum of the electric field of the free
charge and the electric field produced by the radial polarization density. For
the charge at rest, it is given by

ET(r) =

⎧⎨
⎩

0 , r < a + δ
e

4πε0r2 r̂ , r > a + δ .
(4.26)

In other words, the polarization adds a bound volume charge density (−∇·
P) that cancels the free-charge density within the surface layer (a ≤ r < a+δ),
and a compensating bound surface charge density (P · r̂) at the outer surface
(r = a + δ). The total charge (free charge plus bound polarization charge)
reduces to that of Lorentz’s original free-charge shell model of the electron as
the thickness δ of the shell approaches zero.

As the thickness δ of the shell approaches zero, the electrostatic energy
of formation of the free charge and polarization distribution is the same as
the free charge alone; thereby confirming that it is not mandatory for the rest
energy and mass contributed by the short-range dipolar binding forces to have
values other than zero. For the shell at rest, there is no net force exerted on
the free charge by the polarization. (When the charge is moving, the results
of Sections 4.1 and 4.2 show that the polarization binding forces supply a net
force and power to the free charge given in (4.24).)

One can also determine an effective molecular polarizability required to
produce the polarization that holds the free charge on the stationary insula-
tor. For a linear, homogeneous, isotropic dielectric insulator, the polarization
density is proportional to the local field

P = αv

(
ε0ET +

P
3

)
= αv

P
3

, a < r < a + δ (4.27)

where the proportionality constant αv is the molecular polarizability per unit
volume [13, ch. 2]. This last equation shows that the effective molecular po-
larizability at the surface of the insulator must be equal to 3.0 in order for
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the free-charge distribution to excite the required polarization density. This
value of effective molecular polarizability corresponds to an infinite electric
susceptibility at the surface of the insulator.

In brief, the free charge uniformly distributed in a thin layer at the surface
of the insulator induces an effective dielectric polarizability of 3.0 within this
layer and a polarized field that cancels the self repulsive forces that the free
charge exerts on itself. Opposite forces are, of course, exerted on the polarized
material of the dielectric insulator. The insulator material does not fly apart
because it is held together in the stable energy configurations described by
nonclassical physics (quantum mechanics rather than the classical electrody-
namics employed here). Inside the sphere (r < a) it is assumed throughout the
book that the values of the permittivity and permeability are equal to those
of free space, so that the speed of electromagnetic wave propagation inside as
well as outside the sphere is equal to c.

Before leaving this chapter on the internal binding forces, let us summarize
with hindsight the origin and elimination of the discrepancy in power (2.6)
between the Lorentz-Abraham force and power equations of motion. When
the charged sphere is stationary, each element of the charge experiences a
repulsive force due to its own electric field. This electrostatic force integrated
over the charge contributes nothing to the total force on the charge. When
the charged sphere moves, this static self force transforms relativistically, but
still integrates to give a zero total force. However, the moving charged sphere
contracts relativistically in the direction of the velocity by an amount pro-
portional to 1/γ, while the component of the static self force per unit charge
parallel to the velocity remains unchanged. Thus, the component of the static
self force parallel to the velocity does work at a rate proportional to the time
rate of change of 1/γ, as exhibited by the negative of the power in (2.6).

In addition to the self electrostatic force on the stationary charge distri-
bution, each element of charge is held to the insulator by a binding force
that just cancels the electrostatic force. When the charged sphere moves, this
binding force exerted on the charge contributes exactly the negative of the
power delivered to the charge by the electrostatic force, thereby canceling the
discrepancy in power (2.6) between the force and power equations of motion.

Lastly, consider a question concerning the mass of the insulator. Even if
the rest mass of the insulator is negligible, the insulator exerts a binding
force on the charge distribution that does work on the moving charge at the
rate given by (2.6) or (4.10). The negative of this binding force is exerted
on the insulator by the charge. Consequently, work is done on the moving
insulator at the rate given by the negative of (2.6). Thus, one might ask if
this work done on the moving insulator changes the total mass of the moving
charged sphere. The answer to this question is certainly no because of the
Einstein mass-energy relation.. That is, the relativistic mass of the body can
be changed by externally applied forces but not by internal forces that do not
involve energy that leaves or enters the body. From an alternative viewpoint,
the work done by the binding forces exerted on the insulator surface by the
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charge distribution is canceled by the work done by the stresses inside the
insulator material that must oppose the charge-induced binding forces to keep
the insulator relativistically rigid.



5

Electromagnetic, Electrostatic, Bare,
Measured, and Insulator Masses

As a means of discussing the various masses, let us summarize the basic results
that have been derived so far in our re-examination of the Lorentz model of the
electron. We begin with a specific model that we can, in principle, realize in our
classical laboratory, namely, a charge e uniformly distributed on the surface
of an insulator (insulating material continuum) which remains spherical with
constant radius a in its proper inertial frame of reference. Whether or not the
model actually approximates the internal structure of the electron is irrelevant
to its analysis which is based on Maxwell’s equations with retarded (causal)
solutions only, the Lorentz force law, the relativistic generalization of Newton’s
second law of motion, the Einstein mass-energy relation, and the short-range
polarization forces binding the charge to the insulator surface.

When an external force is applied to the shell of charge, for example,
by means of an external electric field, the charge distribution moves with
velocity u(r, t). Except when the insulator has zero velocity, the velocity of the
charge at different positions r on the surface of the insulator cannot have the
same velocity u = u(t) as the center of the insulator if the insulator remains
spherical in its proper frame. (The relationship between u(r, t) and the center
velocity u(t) is given in equation (A.13) for (u/c)2 � 1, and equation (B.32)
for arbitrary u/c.)

The force on each differential element de of the moving charge is the sum
of the externally applied force per unit charge fext(r, t), the internal electro-
magnetic force per unit charge fem(r, t) generated by the charge itself, and
the polarization binding forces per unit charge fb(r, t) holding the charge to
the insulator, that is

[fext(r, t) + fem(r, t) + fb(r, t)] de . (5.1a)

Similarly, the work done per unit time by these forces on the element of charge
de moving with velocity u(r, t) is

[fext(r, t) + fem(r, t) + fb(r, t)] · u(r, t)de . (5.1b)



36 5 The Masses

The internal self electromagnetic force is determined by the Lorentz force
law in terms of the self electric and magnetic fields excited by the moving
charge. The self electromagnetic fields in the charge distribution derive from
Maxwell’s equations with retarded (causal) potentials to give the self electro-
magnetic force per unit charge in (4.11) in the proper frame. The binding force
per unit charge was derived in Section 4.2 by applying Newton’s second law
of motion to each differential element of charge under the requirements that
the charge remains uniformly distributed on the relativistically rigid spherical
insulator in its proper frame of reference (instantaneous rest frame) and that
the mass of the charge distribution is uniformly distributed with the charge
in its proper frame. The binding force per unit charge exerted on the charge
in the proper frame by the short-range polarization forces holding the charge
to the insulator is given in (4.22). It is emphasized that this binding force is
not speculated but deduced from the specific model of the charge residing on
the surface of a nonrotating insulator that maintains its spherical shape and
uniform charge distribution in its proper frame.

The total force F(t) exerted on the charge and the total power P (t) de-
livered to the charge are found by integrating (5.1a) and (5.1b), respectively,
over the charge distribution

F(t) =
∫

charge

fext(r, t)de +
∫

charge

fem(r, t)de +
∫

charge

fb(r, t)de (5.2a)

P (t) =
∫

charge

fext(r, t) · u(r, t)de +
∫

charge

fem(r, t) · u(r, t)de +
∫

charge

fb(r, t) · u(r, t)de.

(5.2b)
By definition ∫

charge

fext(r, t)de = Fext(t) . (5.3a)

Also, because the radius a is assumed small enough that the externally ap-
plied force varies negligibly with the position over the charge distribution (see
(4.13)), the integral involving the external force in (5.2b) becomes∫

charge

fext(r, t) · u(r, t)de = u(t) ·
∫

charge

fext(r, t)de + O(a2)

= Fext(t) · u(t) + O(a2). (5.3b)

The expression (B.32) in Appendix B for u(r, t) in terms of the velocity u(t)
of the center of the shell has been used to perform the integration in (5.3b).

The integrals of the self electromagnetic Lorentz force and power in (5.2a)
and (5.2b), shown explicitly in (3.1) and (3.2) and evaluated rigorously in
Appendix B for the arbitrarily moving shell of charge, are just the negative of
the right-hand sides of the Lorentz-Abraham force equation of motion (2.1)
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and the Lorentz-Abraham power equation of motion (2.4), respectively. That
is ∫

charge

fem(r, t)de =− e2

6πε0ac2

d
dt

(γu) +
e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
(u · ü) +

3γ2

c2 (u · u̇)2
]
u+
}

+ O(a) (5.4a)

and ∫
charge

fem(r, t) · u(r, t)de =− e2

6πε0a

d
dt

(
γ − 1

4γ

)
(5.4b)

+
e2γ4

6πε0c3

[
(u · ü) +

3γ2

c2 (u · u̇)2
]

+ O(a)

where, as throughout, u and its derivatives on the right-hand sides of (5.4)
refer to the velocity u(t) of the center of the shell.

The integrals of the binding force and power in (5.2a) and (5.2b) were
evaluated in Section 4.2 and are given explicitly in (4.24a) and (4.24b), re-
spectively. The total binding force (4.24a) involves the mass mins of the in-
sulator, and the power delivered by the binding force (4.24b) to the charge
just cancels the electromagnetic power term in the right-hand side of (5.4b)
that creates the discrepancy (2.6) between the right-hand side of (5.4b) and
u dotted into the right-hand side of (5.4a). Thus, as a result of adding (5.3),
(5.4) and (4.24), the total force (5.2a) and power (5.2b) become

F(t) = Fext(t) − (mem + mins)
d
dt

(γu) +
e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
(u · ü) +

3γ2

c2 (u · u̇)2
]
u
}

+ O(a) (5.5a)

and

P (t) = F(t) · u(t) = Fext(t) · u(t) − (mem + mins)c2 dγ

dt

+
e2γ4

6πε0c3

[
(u · ü) +

3γ2

c2 (u · u̇)2
]

+ O(a) (5.5b)

where the electromagnetic mass mem = e2/(6πε0ac2). Because the binding
force has removed the discrepancy between (5.5a) and (5.5b), these two equa-
tions can also be written concisely in the four-vector notation given in (2.7).
Also, all the information in both (5.5a) and (5.5b) is contained in (5.5a) alone.



38 5 The Masses

5.1 Bare Mass in Terms of Electromagnetic and
Electrostatic Masses

In (5.5a) we have derived the total force F(t), internal plus external, ex-
perienced by the charge moving with arbitrary center velocity u(t). What
should this total force equal? One’s first thought might be that the total
force on the charge should equal the time rate of change of momentum
(mes + mins)d(γu)/dt since the electrostatic mass mes is the rest mass of the
charge and mins is the rest mass of the insulator; see discussion between (5.8)
and (5.9) below. Alternatively, one might think, as Lorentz and Abraham con-
cluded from the measurements of Kaufmann (see Section 5.1.2), that the total
force should be zero so that the externally applied force equals the time rate
of change of the electromagnetic momentum when mins is zero. But neither
of these alternatives is correct if one accepts the relativistic generalization of
Newton’s second law of motion [22], [7, sec. 29] that says the total external
force applied to a particle should equal, apart from the radiation reaction and
forces of order a of a charged particle, the time derivative of momentum of
the particle, that is

Fext(t) = m
d
dt

[γu(t)] −
(

radiation
reaction

)
+ O(a) (5.6a)

or in four-vector form

F i
ext = mc2 dui

ds
−
(

radiation
reaction

)i

+ O(a) (5.6b)

where m is the measured rest mass of the particle (charge plus insulator) and

(
radiation
reaction

)
=

e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
(u · ü) +

3γ2

c2 (u · u̇)2
]
u
}

(5.6c)

(
radiation
reaction

)i

=
e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)
. (5.6d)

Accepting the rest mass term in (5.6a)–(5.6b) from the relativistic gener-
alization of Newton’s second law of motion (possible extra terms are discussed
in the next subsection 5.1.1), one sees that (5.5) is compatible with (5.6) if
the total force in (5.5) equals the time rate of change of momentum

F(t) = M0
d
dt

(γu) + O(a) (5.7a)

or in four-vector form

F i = M0c
2 dui

ds
+ O(a) (5.7b)
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with the “bare” mass M0 related to the electromagnetic rest mass (2.2) and
the measured rest mass by

M0 = m − mem − mins . (5.8)

Furthermore, the measured rest mass m of the charge shell can be deter-
mined theoretically. Assume the charge is initially distributed uniformly on a
spherical surface of infinite radius where it has zero mass. The work required
to assemble this charge quasi-statically from infinity to the surface of the insu-
lator of radius a is determined from a simple electrostatic calculation [15, sec.
2.7] as e2/(8πε0a). By the Einstein mass-energy relation, the rest mass of the
charged insulator will then be this electrostatic energy of formation divided
by c2, or what is called the electrostatic mass in (2.3), plus the mass mins
of the uncharged insulator. (If gravitational fields [20], [21], or short-range
polarization forces binding the charge to the insulator, or short-range forces
holding the insulator material together contribute non-negligibly to the rest
energy of formation, this mass can be included in mins.) Thus, the measured
rest mass of the charged insulator equals the sum of the electrostatic mass
and the mass of the insulator

m = mes + mins (5.9)

and the bare mass in (5.8) can be written simply as

M0 = mes − mem (5.10)

or from (2.2) and (2.3)

M0 = − e2

24πε0ac2 . (5.11)

Emphatically, the value of the bare mass does not depend on the mass mins
of the insulator.

The final form of the equation of motion in (5.6) or, equivalently, in (5.5)
and (5.7), can now be written for the charged insulator as

Fext(t) = m
d
dt

(γu) − e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
(u · ü) +

3γ2

c2 (u · u̇)2
]
u
}

+ O(a) (5.12a)

Fext · u = mc2 dγ

dt
− e2γ4

6πε0c3

[
(u · ü) +

3γ2

c2 (u · u̇)2
]

+ O(a) (5.12b)

where m = (mes + mins) and mes = e2/(8πε0ac2). Of course, (5.12b) is re-
dundant because it is consistent with the equation obtained by taking the dot
product of u with (5.12a). The negative bare mass M0 in (5.11) eliminates the
4/3 factor in the inertial rest mass of the original Lorentz-Abraham equation
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of motion (2.1) in which the bare mass was assumed zero. With the addition of
the bare-mass force-power to the binding and electromagnetic force-power, the
total force-power and the total momentum-energy transform as four vectors;
see Section 6.1.

The mass of the insulator (mins) allows the equations of motion (5.12) for
the charged insulator to be written with an arbitrary value of the inertial rest
mass. Thus, (5.12) conforms with the results of Schwinger [23], who shows that
stress-momentum-energy tensors with covariant momentum-energy for stable
charge-current distributions can be constructed with or without the 4/3 factor.
Setting mins equal to mes/3 and zero, respectively, corresponds to Schwinger’s
tensors with and without the 4/3 factor; see Section 6.2. (The mass mins can
even be negative since, as mentioned above, it includes gravitational and other
attractive-force formation energies which, in general, are negative.)

The rest mass of the charge has been taken as mes and that of the insulator
as mins. In fact, all we can determine experimentally is the total mass m of
the charge and insulator together as one body. Ultimately, we do not know
where the mass resides—how much in the field, in the charge, in the insulator.
All we know is the rest mass of the insulator before it is charged and after it
is charged. After the insulator is charged, we can ascribe any part of the rest
mass to the insulator and the remaining part to the charge, and the above
analysis goes through to give the same final equations (5.12). Of course, there
is a certain appeal and convenience in keeping, as we have above, the rest
mass of the charge equal to its electrostatic energy of formation mass mes
after the charge is placed on the insulator so that mins refers to the difference
(m − mes).

5.1.1 Extra Momentum-Energy in Newton’s Second Law of
Motion for Charged Particles

The relativistic generalization of Newton’s second law of motion in (5.6) for
a charged particle is not determined uniquely from the nonrelativistic version
of Newton’s second law for uncharged particles. From purely theoretical con-
siderations, any four-vector function of velocity and its time derivatives that
vanishes when the charge is zero could be added to the right-hand side of
(5.6). If, however, we assume that the only irreversible loss of momentum-en-
ergy of the charged particle is the radiated momentum-energy (so that when
the initial and final velocities and their time derivatives are the same, the only
change in momentum-energy will be that which is radiated) then this extra
four-vector function must be expressible as the time derivative of a momen-
tum-energy function. In addition, since all the functions in (5.6b) satisfy the
condition that their scalar product with ui equals zero (that is, the time rate
of change of momentum and energy components of (5.6b) are compatible) the
extra function must also satisfy this condition. Thus, on theoretical grounds
(5.6b) can be further generalized to [12]
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F i
ext = mc2 dui

ds
−
(

radiation
reaction

)i

+
dGi

extra

ds
+ O(a) (5.13)

where dGi
extra/ds is a four-vector function of velocity and its derivatives that

exists only for charged particles and satisfies

dGi
extra

ds
ui = 0 . (5.14)

Of course, dGi
extra/ds is a function of the charge e, since it vanishes when

the charge vanishes and may be a function of the radius a of the charge
distribution.1

If we also assume that the only irreversible loss in angular momentum-en-
ergy of the charged particle is the radiated angular momentum-energy, since
the shell of charge is assumed to translate without rotation, then u × Gextra
and its four-vector version, uiGj

extra − ujGi
extra, must be expressible as the

time derivative of an angular momentum-energy function [24]. This follows
from taking the cross product of the position vector r of the center of the
particle with the three-vector equation of motion in (5.13) to get

r × Fext = m
d
dt

(r × γu) − r ×
(

radiation
reaction

)
+

d
dt

(r × Gextra) − u × Gextra + O(a) (5.15a)

or in four-vector form

xiF j
ext − xjF i

ext = mc2 d
ds

(xiuj − xjui) −
(

angular radiation
reaction

)ij

+
d
ds

(
xiGj

extra − xjGi
extra

)
−
(
uiGj

extra − ujGi
extra

)
+ O(a). (5.15b)

When the initial and final position, velocity, and higher derivatives of the
position of the center of the particle are the same, the only change in angular
momentum will be in the radiated angular momentum if u×Gextra is a perfect
time differential of an angular momentum function (Lextra)

u × Gextra =
d
dt

Lextra (5.16a)

1 The reversible and irreversible parts of the radiation reaction term in (5.13) are
given in (5.6d) as [e2/(6πε0)]d2ui/ds2 and [e2/(6πε0)]ui(duj/ds) (duj/ds), re-
spectively. In Chapter 8 we show that the series expansions of the self force that
lead to this radiation reaction term do not hold during the short proper time
interval Δta after the external force is first applied. During this transition inter-
val [0, Δta], the self force and thus the right-hand side of (5.13) may contain a
“transition force” (−f i

a) with both reversible and irreversible parts that removes
the pre-acceleration from the solution to the equation of motion. The O(a) terms
in (5.13) also contain both reversible and irreversible parts.
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or in four-vector form

uiGj
extra − ujGi

extra =
d
ds

Lij
extra . (5.16b)

There is apparently no experimental evidence for the existence of an extra
momentum-energy function in the equation of motion of a charged particle at
least to order a, and, as Dirac said, “they are all much more complicated than
[mc2dui/ds], so that one would hardly expect them to apply to a simple thing
like an electron” [12, p. 154]. Thus, except for the transition force f i

a explained
in Chapter 8 (see Footnote 1 of the present chapter), we will assume Gi

extra is
zero and accept (5.6) as the correct generalization of Newton’s second law of
motion for the charged shell.

5.1.2 Reason for Lorentz Setting the Bare Mass Zero

All the tools of special relativity [5], [6] were not available to Lorentz and
Abraham when they originally derived the total force on the moving Lorentz
model of the electron. In particular, the Einstein mass-energy relationship [6]
and the relativistic version of Newton’s second law of motion [22] had not
appeared. However, Lorentz did assume the pre-relativistic form of Newton’s
second law of motion and thus set the total force equal to a constant bare
mass M , which Lorentz called the “material” mass, times the acceleration u̇
[4, secs. 28, 32, and 179] to get

Fext(t) =
e2

6πε0ac2

d
dt

(γu) + M
du
dt

−
(

radiation
reaction

)
+ O(a) . (5.17)

(For the charged insulator model, Lorentz’s bare mass M in (5.17) would
include the mass of the uncharged insulator, that is, M = M0 + mins.)

The key feature of (5.17) is that Lorentz assumed the constant bare mass
M in (5.17) was multiplied by du/dt rather than d(γu)/dt (even though he
and Abraham had discovered the γ factor in the time rate of change of the
electromagnetic momentum in (5.17) before 1905).

Between 1901 and 1905, Kaufmann [25] performed experiments to deter-
mine the charge to mass ratio for “fast moving” electrons. Lorentz and Abra-
ham hoped that these experiments would decide between Lorentz’s contract-
ing (relativistically rigid) model of the electron and Abraham’s noncontracting
(nonrelativistically rigid) model. Although his experiments were not accurate
enough to settle this question [26], Kaufmann’s experiments showed clearly
that the preponderance of momentum in the electron varied as d(γu)/dt rather
than du/dt. Thus Lorentz accepted Kaufmann’s results as experimental ev-
idence that the bare mass in (5.17) was negligible. To quote Lorentz [4, sec.
32], “Of course we are free to believe, if we like, that there is some small ma-
terial [bare] mass attached to the electron, say equal to one hundredth part
of the electromagnetic one, but with a view to simplicity, it will be best to
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admit Kaufmann’s conclusion, or hypothesis, if we prefer so to call it, that the
negative electrons have no material [bare] mass at all. This is certainly one of
the most important results of modern physics, . . .” (Abraham also concluded
from Kaufmann’s experiments that the bare mass of the electron was zero [3,
sec. 16].)

As late as 1912, Schott continued to “suppose M zero, in accordance
with the most recent measurements” [16, p. 178]. Even after experiments by
Bucherer [27] in 1909, Neumann [28] in 1914, and Bohr [29] in 1915 decided
in favor of Lorentz’s contracting model over Abraham’s noncontracting model
of the electron, and thus also confirmed the prediction of special relativity, at
least for “electrical systems,” the bare mass was generally assumed outside
the jurisdiction of special relativity and these experiments were regarded as
confirming that the bare mass was zero. Richardson [30, ch. 11] summarizes
the general consensus in 1915:

“These experiments [Bucherer’s] appear to dispose effectually of the rigid
[Abraham’s nonrelativistically rigid or noncontracting] electron and they may
be regarded as making it reasonably certain that Thomson’s corpuscles are
devoid of mass except such as is due to the charge that they carry. For this
reason we shall always refer to them in the sequel as negative electrons. We
shall find later that the relation between [the moving mass] and [the rest
mass] characteristic of the Lorentz contractible electron is true of all electrical
systems according to the principle of relativity. Bucherer’s experiment may
therefore be regarded as evidence in favor of that principle. A remarkable
confirmation of the relativity expression for the mass of a moving particle
has recently been obtained by N. Bohr from consideration of the decrease of
velocity of α and β rays in passing through matter.”

Cunningham [31] also gives a very readable account of the conclusions
drawn in 1914 from the experiments of Kaufmann et al.

By 1920, however, it was generally accepted that the principle of relativ-
ity applied to all mass, and Pauli would write, “The old idea that one could
distinguish between the constant ‘true’ [bare] mass and the ‘apparent’ elec-
tromagnetic mass, by means of deflection experiments on cathode rays, can
therefore not be maintained” [7, sec. 29].

Thus, one cannot accept (5.17) or continue to assume a bare mass M0 equal
to zero, for our specific model of the electron as a charged insulator, without
violating the equivalence of mass and energy and the relativistic version of
Newton’s second law of motion, which imply the negative bare mass in (5.11)
for this model. Also the bare mass, as pointed out in Section 4.2, should
not be confused with the uncharged mass of the insulator. However, because
Lorentz’s bare mass corresponds to (M0 +mins) in our analysis of the charged
insulator, Lorentz’s bare mass M can still be zero in the special case when the
mass mins of the insulator equals −M0, that is, mes/3. In that special case
the total mass of the charged insulator would be (4/3)mes = mem.
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Transformation and Redefinition of
Force-Power and Momentum-Energy

In chapter 4 it was shown that the specific model of an electron as a charged
insulator demands polarization forces, binding the charge to the insulator,
that just cancel the discrepancy (2.6) between the Lorentz-Abraham force
and power equations of motion, (2.1) and (2.4). In Chapter 5 we saw that
the relativistic generalization of Newton’s second law of motion, together
with the Einstein mass-energy equivalence relation, require the negative bare
mass in (5.11) that eliminates the factor of 4/3 multiplying the electrostatic
mass in the original equation of motion (2.1). In this chapter we summarize
the transformation properties of the electromagnetic, binding, and bare-mass
force-powers and momentum-energies, derive a total stress-momentum-energy
tensor for the charged insulator model of the electron, and review the redefi-
nitions of electromagnetic momentum-energy that have been proposed in the
past for the extended electron.

6.1 Transformation of Electromagnetic, Binding, and
Bare-Mass Force-Power and Momentum-Energy

In order to summarize the transformation properties of the electromagnetic,
binding, and bare-mass momentum and energy as well as their time deriva-
tives, force and power, for the charged insulator model of the electron, it will
be helpful first to make a concise list of these quantities. The self electromag-
netic, binding, and bare-mass forces exerted on the charge, and the associated
powers delivered to the charge can be written from the preceding chapters as

Fem = −dGem

dt
= −4

3
mes

d(γu)
dt

+ O(1) (6.1a)

Pem = −dWem

dt
= −4

3
mesc

2 d
dt

(
γ − 1

4γ

)
+ O(1) (6.1b)
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Fb = −dGb

dt
= −mins

d(γu)
dt

+ O(a) (6.2a)

Pb = −dWb

dt
= −minsc

2 dγ

dt
− 4

3
mesc

2 d
dt

(
1
4γ

)
+ O(a) (6.2b)

F0 = −dG0

dt
=

1
3
mes

d(γu)
dt

(6.3a)

P0 = −dW0

dt
=

1
3
mesc

2 dγ

dt
(6.3b)

where the electrostatic mass is given in (2.3), and the dominant parts of the
O(1) term in (6.1a) and the O(1) term in (6.1b) are the radiation reaction
force and power, respectively. Adding the externally applied force and power
to the sum of the electromagnetic, binding, and bare-mass forces and powers
in (6.1), (6.2), and (6.3), and setting the total force and power equal to zero
give the equations of motion (5.12) for the charged insulator.

The momentum and energy of the charged insulator system as a whole
can be found by integrating the expressions (6.1), (6.2), and (6.3) of force and
power with respect to time for zero initial velocity. For zero initial velocity, the
initial electromagnetic momentum, ε0

∫
E×BdV over all space, is zero and the

binding and bare-mass momenta are zero. The initial electromagnetic energy,
(ε0/2)

∫
(E2 + c2B2)dV over all space, equals the rest energy of formation

of the charge (mesc
2) and the initial binding energy is chosen equal to the

rest energy of the mass of the insulator (minsc
2). Then, the initial energy of

the negative bare mass is zero because the total rest energy of formation of
the charged insulator is assumed equal to the sum of the electrostatic and
insulator rest energies. (If it is more appealing to have the initial energy of
the bare mass equal to −mesc

2/3, one can choose the initial binding energy
equal to minsc

2 + mesc
2/3. Such a change would add and subtract mesc

2/3
in the following expressions for Wb and W0, respectively.) The momenta and
energies corresponding to (6.1)–(6.3) are

Gem =
4
3
mesγu + O(1) (6.4a)

Wem =
4
3
mesc

2
(

γ − 1
4γ

)
+ O(1) = mesc

2γ

(
1 +

u2

3c2

)
+ O(1) (6.4b)

Gb = minsγu + O(a) (6.5a)

Wb = minsc
2γ +

1
3
mesc

2
(

1
γ

− 1
)

+ O(a) (6.5b)

G0 = −1
3
mesγu (6.6a)

W0 = −1
3
mesc

2(γ − 1) . (6.6b)
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From these expressions of force-power and momentum-energy, one draws
the following conclusions about their transformation properties. Neither the
electromagnetic momentum-energy (cGem, Wem) nor its time derivative, the
electromagnetic force-power γ(cFem, Pem), transforms as a four-vector. Simi-
larly, neither the binding momentum-energy (cGb, Wb) nor the binding force-
power γ(cFb, Pb) transforms as a four-vector. Also (Fem · u − Pem) and
(Fb · u − Pb) are not equal to zero. Even the sum of the electromagnetic
and binding momentum-energy does not transform as a four-vector. How-
ever, the sum of the electromagnetic and binding force-power transforms as a
four-vector and satisfies (Fem +Fb) ·u− (Pem +Pb) = 0. The bare-mass force-
power γ(cF0, P0) also transforms as a four-vector satisfying F0 · u − P0 = 0;
whereas, the bare-mass momentum-energy (cG0, W0) does not transform as a
four-vector, but contributes to the electromagnetic and binding momentum-
energy to yield a total momentum-energy that is free of the 4/3 factor and
transforms as a four vector. (If, as mentioned above, the initial binding energy
were chosen equal to minsc

2 + mesc
2/3, so that the initial energy of the bare

mass equaled −mesc
2/3, then both the bare-mass momentum-energy and the

sum of the electromagnetic and binding momentum-energy would transform
as four-vectors.)

It may still be disconcerting that the total momentum and energy of a
charged massless insulator is not given by the conventional electromagnetic
momentum and energy

Gem = ε0

∫
all space

E × BdV (6.7a)

Wem =
ε0
2

∫
all space

(E2 + c2B2)dV (6.7b)

or that the total momentum of a charged massless insulator is not given by
the conventional electromagnetic momentum alone even when the velocity of
the charge is much less than the speed of light, but contains also the momen-
tum of a negative bare mass. However, one can take consolation in realizing
that no law of physics is violated by the conventional electromagnetic mo-
mentum not equaling the total momentum of the charge. What we know from
Einstein’s mass-energy relation and the relativistic version of Newton’s sec-
ond law of motion is that the total momentum equals (in addition to the
radiation momentum) the electrostatic mass (mes, rest energy of formation
divided by c2) times the velocity (γu). However, what we know from Maxwell’s
equations and the Lorentz force law is merely that the sum of the external
and self electromagnetic forces on the charge is Fext − (d/dt)ε0

∫
E × BdV .

Only if this force on the charge equals zero, can the total momentum of the
particle be given entirely by the conventional electromagnetic momentum.
Since (d/dt)ε0

∫
E × BdV equals (4/3)mesd(γu)/dt (plus radiation terms)

rather than mesd(γu)/dt, the Einstein mass-energy relation and Newton’s
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second law for relativistic motion demand that this force not be zero but
equal (−1/3)mesd(γu)/dt, and consequently, that the total momentum of the
moving charge not be equal to its conventional electromagnetic momentum
alone.

From the standpoint of the electromagnetic stress-momentum-energy ten-
sor, it is not surprising that the conventional electromagnetic momentum-en-
ergy does not represent the total momentum-energy of the moving charge
distribution. Because the electromagnetic stress-momentum-energy tensor is
not divergenceless when charge-current is present, the associated momentum-
energy will not, in general, be a four-vector. Thus the electromagnetic mo-
mentum-energy could not, in general, be expected to represent the total mo-
mentum-energy of the system.

6.1.1 Total Stress-Momentum-Energy Tensor for the Charged
Insulator

The four-divergence of the electromagnetic stress-momentum-energy tensor
T ij

em(r, t) equals the force-power density [13], that is

∂T ij
em

∂xj
= −f i

em (6.8)

where
f i
em ≡ ρ(r, t) [fem(r, t), fem(r, t) · u(r, t)/c] (6.9)

and T ij
em can be written out as

T ij
em =

[
−T̄em cgem

cgem wem

]
(6.10)

T̄em ≡ ε0
[(

EE − ĪE2/2
)

+ c2 (BB − ĪB2/2
)]

(6.11a)

gem = ε0E × B (6.11b)

wem =
ε0
2

(E2 + c2B2) . (6.11c)

One can also construct stress-momentum-energy tensors with divergences
equal to the binding and bare-mass force-power densities, that is

∂T ij
b

∂xj
= −f i

b(r, t), f i
b ≡ ρ(r, t) [fb(r, t), fb(r, t) · u(r, t)/c] (6.12)

∂T ij
0

∂xj
= −f i

0(r, t), f i
0 ≡ e

24πε0ac2 ρ(r, t)
[
d(γu)

dt
, c

dγ

dt

]
. (6.13)

(As usual, when u = u(t) appears without the functional dependence (r, t), it
refers to the velocity of the center of the charged shell.) Adding the binding
and bare-mass tensors to the electromagnetic tensor would then produce a
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total stress-momentum-energy tensor whose momentum-energy density would
form a four-vector when integrated over all space. Taking the time rate of
change of this four-vector momentum-energy produces a four-vector force-
power that, when set equal to the externally applied force, results in the force
and power equations of motion (5.12). If no external force is applied to the
charged insulator, so that its velocity is constant, the total stress-momentum-
energy tensor is divergenceless and the associated four-vector momentum-en-
ergy is conserved.

First, let us construct the bare-mass tensor T ij
0 , from its following three-

vector equations corresponding to (6.13)

−∇ · T̄0 +
∂g0

∂t
= − e

24πε0ac2 ρ
d(γu)

dt
(6.14a)

c∇ · g0 +
1
c

∂w0

∂t
= − e

24πε0ac
ρ
dγ

dt
. (6.14b)

A fairly obvious solution to (6.14) is

g0 = − e

24πε0ac2 γρu (6.15a)

w0 = − e

24πε0a
γρ (6.15b)

T̄0 =
e

24πε0ac2 γρuu (6.15c)

or in four-vector notation

T ij
0 = − e

24πε0aγ
ρuiuj . (6.16)

Rohrlich [32, sec. 6-1] includes the bare-mass tensor (6.16) as part of the “co-
hesion” or binding stress-momentum-energy tensor. However, for the charged
insulator model, it seems preferable to separate the bare-mass tensor from the
binding tensor, because we found in Chapters 4 and 5 that the binding forces
do not make the inertial mass compatible with the rest energy of formation.

It is easily shown that the solution (6.15) satisfies (6.14), or that (6.16)
satisfies (6.13); specifically we have

−∇ · T̄0 = − e

24πε0ac2 γ[∇ · (ρu)]u (6.17a)

∂g0

∂t
= − e

24πε0ac2

[
ρ
∂(γu)

∂t
+ γu

∂ρ

∂t

]

= − e

24πε0ac2

[
ρ
d(γu)

dt
− γ[∇ · (ρu)]u

]
(6.17b)
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c∇ · g0 = − e

24πε0ac
γ∇ · (ρu) (6.17c)

1
c

∂w0

∂t
= − e

24πε0ac

[
ρ
∂γ

∂t
+ γ

∂ρ

∂t

]

= − e

24πε0ac

[
ρ
∂γ

∂t
− γ∇ · (ρu)

]
(6.17d)

which produce identities when inserted into the left-hand sides of (6.14a) and
(6.14b).

The binding stress-momentum-energy tensor must satisfy the following
three-vector equations corresponding to (6.12)

−∇ · T̄b +
∂gb

∂t
=

e2

32π2ε0a4 γδ(r0 − a)r̂0 +
mins

e
ρ

d
dt

(γu) (6.18a)

c∇ · gb +
1
c

∂wb

∂t
=

e2

32π2ε0a4c
γδ(r0 − a)r̂0 · u(r, t) +

minsc

e
ρ
dγ

dt
. (6.18b)

The charge density in the first terms on the right-hand sides of (6.18) has
been expressed as a function of the static charge density, that is

ρ(r, t) = γρ0(r0) = γδ(r0 − a)
e

4πa2 (6.19)

where r0 is given in terms of r at the time t by the Lorentz transformation

r0 = (r − rc)⊥ + γ(r − rc)‖ (6.20a)

and the position rc of the center of the charged shell can be written in terms
of the velocity of the center as

rc =

t∫
u(t′)dt′ . (6.20b)

(The subscripts ⊥ and ‖ mean perpendicular and parallel, respectively, to the
center velocity u(t) at the time t; and δ(x) is the Dirac delta function.) The
binding force per unit charge in (6.18) is equal to the exact binding force
per unit charge in (4.22) with the first term on the right-hand side of (4.22)
averaged over the thickness of the shell and generalized to an arbitrary inertial
reference frame. The second term on the right-hand side of (4.22), which is
present when the velocity of the charge is not constant, is not included in
(6.18). Also, the expressions (6.19) and (6.20a) neglect terms of second order
and higher in (r − rc) when the velocity of the charge is not constant; see
(B.30). These secondary binding forces are necessary to hold the accelerating
charge to the insulator, but they are inconsequential to the integrated force
and power because the results of Chapter 4 (specifically, equations (4.24))
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show that their integrals over the charge distribution are of O(a). (In principle,
T ij

b could be modified to include the secondary binding stresses, but in practice
it may be rather tedious to construct the necessary, relativistically invariant
modification.)

A particularly simple solution to (6.18) is

gb =
mins

e
γρu (6.21a)

wb =
e2

32π2ε0a4 h(a − r0) +
minsc

2

e
γρ (6.21b)

T̄b =
e2

32π2ε0a4 h(a − r0)Ī − mins

e
γρuu (6.21c)

or in four-vector notation

T ij
b =

e2

32π2ε0a4 h(a − r0)gij +
minsc

2

eγ
ρuiuj (6.22)

where gij is the metric tensor

gij ≡

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ (6.23)

and h is the unit step function.
The preceding solution for T ij

b can be used to prove immediately that the
mins part of the solution in (6.21) satisfies (6.18). To see that the remaining
part of the solution in (6.21) satisfies (6.18), evaluate ∇ · T̄b and ∂wb/∂t for
that part to get

−∇ · T̄b = − e2

32π2ε0a4 ∇h(a − r0) = − e2

32π2ε0a4

[
∂h

∂r‖
r̂‖ +

∂h

∂r⊥
r̂⊥

]

or

−∇ · T̄b = − e2

32π2ε0a4

[
γ

∂h

∂r0‖
r̂0‖ +

∂h

∂r0⊥
r̂0⊥

]

= − e2

32π2ε0a4 ∇0h ·
[
γr̂0‖r̂0‖ + r̂0⊥r̂0⊥

]
or

−∇ · T̄b =
e2δ(r0 − a)γ

32πε0a5

[
r0‖ +

r0⊥
γ

]
= −ρfb (6.24a)

and

∂wb

∂t
=

e2

32πε0a4

∂h(a − r0)
∂t

=
e2

32πε0a4 ∇0h · ∂r0

∂t
= −e2δ(r0 − a)

32πε0a4 r̂0 · ∂r0

∂t
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or since from (6.20)

∂r0

∂t
= −

(
∂rc

∂t

)
⊥

+
∂

∂t
[γ(r − rc)]‖ = −γu + (r − rc)‖

∂γ

∂t
= −γu +

r0‖
γ

∂γ

∂t

having made use of (∂rc/∂t)⊥ = u⊥ = 0, so that

∂r0

∂t
= −γu

[
1 +

(u · r0)
u2

d
dt

(
1
γ

)]

then

1
c

∂wb

∂t
=

e2δ(r0 − a)γ
32πε0a4c

r̂0 ·u
[
1 +

u · r0

u2

d
dt

(
1
γ

)]
= −ρfb ·u‖(r, t)/c. (6.24b)

Inserting (6.24a) and (6.24b) into (6.18) shows that the binding stress-mo-
mentum-energy tensor in (6.21) indeed satisfies its defining equations (6.18),
or equivalently, that (6.22) satisfies (6.12).

Equations (B.32) and (A.21) have been used to prove in (6.24b) that (to
order r2

0)

u
[
1 +

u · r0

u2

d
dt

(
1
γ

)]
= u‖(r, t) . (6.25)

Thus, the time derivative of wb in (6.21b) equals −ρfb · u‖(r, t) rather than
−ρfb · u(r, t). However, the difference is inconsequential with respect to the
integral over all space of the power density, because∫

all space

ρfb · u⊥(r, t)dV = 0 (6.26)

so that ∫
all space

ρfb · u‖(r, t)dV =
∫

all space

ρfb · u(r, t)dV = − e2

24πε0a

d
dt

(
1
γ

)
(6.27)

exactly the right value to cancel the discrepancy (2.6) between the electro-
magnetic force and power. Note that if we had assumed u were constant in
our derivation of the binding force tensor, u‖(r, t) would equal u, and the to-
tal power obtained by integrating the power density would erroneously equal
zero, that is ∫

all space

ρfb · u‖dV = u ·
∫

all space

ρfbdV = 0 (6.28)

as explained previously in Chapters 3 and 4. (In (6.24) through (6.30) be-
low, the terms involving the mass of the insulator are ignored since they are
irrelevant to this discussion.)
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One can also obtain the result (6.27) by integrating the energy density wb
of the binding tensor over all space to get

Wb =
∫

all space

wbdV =
e2

24πε0a

1
γ

(6.29)

and taking the negative of the time derivative. Note that Wb in (6.29) differs
by a constant (e2/(24πε0a)) from its value in (4.9) or (6.5b) (with mins = 0).
This is because W0 calculated from

W0 =
∫

all space

w0dV = − e2

24πε0a
γ (6.30)

differs from W0 in equation (6.6b) by the negative of the same constant
(−e2/(24πε0a)), so that the sum, Wb + W0, remains the same whether it
is calculated by adding (6.29) and (6.30) or (6.5b) and (6.6b). As mentioned
in Section 6.1, an arbitrary constant energy can be added and subtracted
from the binding and bare-mass energies, Wb and W0, respectively, without
changing the total energy of formation or the final equations of motion of the
charged insulator.

In summary, a total stress-momentum-energy tensor T ij has been derived
for the charged insulator model of the electron. It can be written as the sum
of the electromagnetic, binding-force, and bare-mass stress-momentum-energy
tensors

T ij(r, t) = T ij
em+

e2

32π2ε0a4 h(a−r0)gij +
c2

4πa2 (mins+M0)δ(r0−a)uiuj (6.31)

with the bare mass M0 equal, of course, to −mes/3 = −e2/(24πε0ac2). In
(6.31) the right-hand side of (6.19) has replaced ρ in (6.16) and (6.22), and
r0 is given in terms of (r, t) by the general Lorentz transformation (6.20).
The four-divergence of T ij produces the time rate of change of the total mo-
mentum-energy density, for the charge distribution bound to the insulator,
throughout all space and time; specifically

∂T ij

∂xj
= −f i

em − f i
b − f i

0 (6.32)

=
ρ(r, t)

γe

[
(mes + mins)c2 dui

ds
− e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)]
+ O(a)

with ρ(r, t) given in (6.19).
The integral over all space of −∂T ij/∂xj produces the sum of the electro-

magnetic, binding, and bare-mass force-powers given previously in equations
(6.1) through (6.3) as well as the radiation reaction and higher order elec-
tromagnetic force-power terms. In other words, ∂T ij/∂xj integrated over all
space yields a four-vector force-power and the consistent equations of motion
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(5.12) for the charged insulator when this integral is set equal to the externally
applied force. Writing the externally applied force f i

ext as

f i
ext = [fext, fext · u/c] =

∂T ij
ext

∂xj
(6.33)

we have
∂

∂xj
(T ij + T ij

ext) = 0. (6.34)

Also, the integral of T i4 over all space produces the four-vector sum of the elec-
tromagnetic, binding-force, and bare-mass momentum-energies given in the
equations (6.4) through (6.6), plus the four-vector electromagnetic radiation-
reaction momentum-energy. If the velocity of the charge distribution is con-
stant (no external force applied), the right-hand side of (6.32) is zero, or
equivalently, the divergence of T ij is zero, and it thereby yields a conserved
four-vector momentum-energy.

When the velocity u is a constant the stress-momentum-energy tensor T ij

given in (6.31), together with (6.20), is basically the same as Schwinger’s “first
stress tensor” [23, eq. (42)]. The difference is due to Schwinger’s tensor having
its bare-mass portion distributed throughout the oblate spheroid, whereas we
have assumed the bare mass and mass of the insulator are distributed with the
thin shell of charge. Of course, the stress tensors of Schwinger are not derived
from the detailed analysis of the charged insulator model of the electron, but
are constructed by subtracting a charge-current stress tensor, for a charge in
uniform motion, from the electromagnetic stress-momentum-energy tensor,
so that the divergence of the resulting tensor is zero. The stress tensors of
Schwinger are discussed further in the following section.

6.2 Redefinition of Electromagnetic Momentum and
Energy

A number of authors, beginning apparently with Fermi [33], have suggested
that the consideration of specific binding forces and bare masses could be
avoided in obtaining the equation of motion (5.12) by redefining the elec-
tromagnetic momentum and energy (and associated stress-momentum-energy
tensor) used to determine the self electromagnetic force and power [23], [32],
[34]. In particular, they replace the original electromagnetic momentum and
energy densities, ε0E×B and ε0(E2 +c2B2)/2, in the second integrals of (3.1)
and (3.2) by new momentum and energy densities, gnew(r, t) and wnew(r, t),
such that the total momentum Gnew and energy Wnew

Gnew(t) =
∫

all space

gnew(r, t)dV (6.35a)
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Wnew(t) =
∫

all space

wnew(r, t)dV (6.35b)

transform as a four-vector, at least when the charge has constant velocity,
and satisfy the consistency requirements (5.14) and (5.16b). Moreover, gnew
and wnew can be chosen to eliminate the 4/3 factor that arises using the
conventional definition of electromagnetic momentum and energy.

For example, if the stress-momentum-energy tensor is redefined so that the
momentum density gnew(r, t) equals γ2u multiplied by any invariant function
involving the electromagnetic field, charge-current, or both [15, sec. 1.23] (in-
variant with respect to all inertial frames moving with constant relative veloc-
ities), and the energy density wnew(r, t) equals γ2c2 times the same invariant,
that is

gnew(r, t) = γ2uI (6.36a)

wnew(r, t) = γ2c2I (6.36b)

where u is the velocity of the charge, and I is the invariant, then the total
momentum and energy in (6.35) of a charge distribution moving with constant
velocity transform as a four-vector. The total momentum and energy in (6.35)
calculated from (6.36) determine a four-vector because (γu, γc) is a four-vector
and

∫
IγdV over all space is an invariant, provided I is calculated for a charge

distribution moving with constant velocity.
Rohrlich et al. [32], [34] redefine the momentum-energy to yield the specific

invariant
I =

ε0
2c2

(
E2 − c2B2) (6.37)

which can be inserted into (6.36) and integrated in (6.35) for a uniformly
charged sphere moving with constant velocity u to give the four-vector

Gnew(t) = mesγu (6.38a)

wnew(t) = mesγc2 (6.38b)

mes =
ε0
2c2

∫
all space

(E2 − c2B2)γdV =
e2

8πε0ac2 . (6.38c)

For a charged sphere moving with arbitrary velocity u, (6.37) still yields
(6.38) for the dominant 1/a terms of the momentum and energy. Thus when
one replaces ε0E × B and ε0(E2 + c2B2)/2 in the self electromagnetic force
and power equations (3.1) and (3.2) by gnew and wnew in (6.36a) and (6.36b),
with I inserted from (6.37), the 1/a terms in the final forms of the force and
power equations of motion, (5.12a) and (5.12b), emerge without the explicit
introduction of binding forces or a nonzero bare mass. However, for arbitrary
velocity u the invariant (6.37) does not predict the correct radiation reaction
terms in the equations of motion (5.12).
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Alternative momentum and energy densities to (6.36) can be found that
produce consistent results for the 1/a terms (consistent with the requirements
(5.14) and (5.16b) on the rate of change of linear and angular momentum-
energy) and correct radiation reaction terms in the momentum and energy
equations of motion. Probably the simplest way to do this is to subtract the
momentum-energy density (gs, ws) from the original electromagnetic momen-
tum-energy density ε0[E × B, (E2 + c2B2)/2] to form

gnew = ε0E × B − gs (6.39a)

wnew =
ε0
2

(E2 + c2B2) − ws (6.39b)

such that
Gnew = ε0

∫
all space

E × BdV −
∫

all space

gsdV (6.40a)

and
Wnew =

ε0
2

∫
all space

(E2 + c2B2)dV −
∫

all space

wsdV (6.40b)

will form the four-vector (msγu, msγc2), that is

Gnew = msγu (6.41a)

Wnew = msγc2 (6.41b)

when the charge has constant velocity, where ms is an arbitrary constant mass.
For a relativistically rigid charged sphere moving with constant velocity, we
see from Appendix B or (6.4a)–(6.4b) that

ε0

∫
all space

E × BdV =
4
3
mesγu (6.42a)

and
ε0
2

∫
all space

(E2 + c2B2)dV =
4
3
mesc

2(γ − 1
4γ

) (6.42b)

which combine with (6.40) and (6.41) to show that gs and ws must satisfy∫
all space

gsdV =
(

4
3
mes − ms

)
γu (6.43a)

∫
all space

wsdV =
(

4
3
mes − ms

)
γc2 − mesc

2

3γ
. (6.43b)

Moreover, if (gs, ws) are chosen to satisfy (6.43a) and (6.43b) for arbitrary
velocity u, then the time derivative of (6.40a) and (6.40b) for arbitrary velocity
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will yield 1/a terms consistent with (5.14) and (5.16b), and correct radiation
reaction terms (and all higher electromagnetic terms) in the self force and
power.

Schwinger [23] has derived divergenceless stress-momentum-energy tensors
for constant velocity charge-current distributions, such that a (gs, ws) can sat-
isfy (6.43) for ms = mem, or (gs, ws) can satisfy (6.43) for ms equal to the
electrostatic mass mes. And, in fact, his method can be immediately gener-
alized to find a (gs, ws) that will satisfy (6.43) for an arbitrary value of the
constant mass ms in the 1/a term of the redefined momentum-energy given
by (6.40).

Specifically, Schwinger rewrites the electromagnetic force-power density for
uniformly moving (constant velocity) charge distributions, that are spherically
symmetric in their rest frames, as the divergence of a tensor that depends
only on the charge-current distribution. When this force-power tensor, which
is not unique, is subtracted from the electromagnetic stress-momentum-en-
ergy tensor, a new divergenceless stress-momentum-energy tensor results for
which the total momentum-energy is a four-vector. In particular, he finds the
two stress-momentum-energy tensors

T ij
1 = T ij

em + (gij − uiuj)T (6.44a)

and
T ij

2 = T ij
em + gijT (6.44b)

where T is a scalar that depends on the spherical charge distribution. (The
first is found by subtracting the tensor uiujT , which is divergenceless at con-
stant velocity, from the second.) For the uniformly moving shell of charge

T =
e2

32π2ε0a4 h(a − r0) (6.44c)

with r0 given in terms of (r, t) through the Lorentz transformation. Thus,
the first tensor (6.44a) is essentially the same as the stress-momentum-energy
tensor (6.31) derived for the charged insulator model when the mass of the
insulator mins is zero. Its mass, determined by the integral of the energy or
momentum over all space, equals the electrostatic mass. (As mentioned in
Section 6.1, the slight difference between (6.44a) and (6.31) with mins zero
is the result of the bare-mass portion of Schwinger’s tensor being distributed
throughout the oblate spheroid rather than in the thin shell of charge.) The
mass associated with the second tensor (6.44b) equals the electromagnetic
mass. It would correspond to a charged insulator with the mass of the insu-
lator material equal to 1/3 the electrostatic mass. Basically, the method of
Schwinger is a mathematical way to include the effect of Poincaré stresses
without relating them to the physics of the charged particle.

Of course, there are drawbacks to redefining the electromagnetic momen-
tum and energy. If the momentum and energy densities are changed in the



58 6 Force-Power and Momentum-Energy

second integrals of (3.1) and (3.2), so as to also change the values of the time
derivatives of these integrals, these new values of self electromagnetic force
and power will no longer equal the Lorentz force and power (the first integrals
in (3.1) and (3.2)) for the shell of charge. This implies one or more of the
following alternatives:

1. the definition of the Lorentz force must change
2. Maxwell’s equations must change
3. the charge-current distribution must change
4. unknown forces (electromagnetic or nonelectromagnetic) are present that

contribute to the total self force and power of the charge distribution.

None of these alternatives seem very attractive because they each involve
introducing extra unknowns unnecessarily into the simple, deterministic model
of the electron as an insulator that remains spherical and uniformly charged
in every proper inertial frame of reference. Also, none of the redefined stress-
momentum-energy tensors predict the second and higher order binding forces
on the right-hand side of (4.22) that are necessary to hold the accelerating
charge to the insulator.
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Momentum and Energy Relations

The equations of motion (5.12) for the charged insulating sphere of radius
a moving with arbitrary center velocity u(t) can be rewritten in four-vector
notation [13] as

F i
ext = mc2 dui

ds
− e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)
+ O(a) (7.1)

with
F i

ext ≡ γ (Fext,Fext · u/c) (7.2a)

ui ≡ γ (u/c, 1) (7.2b)

ui ≡ γ (−u/c, 1) (7.2c)

ds ≡ cdt/γ . (7.2d)

The measured rest mass m of the charged insulator equals (mes + mins) with
mes = e2/(8πε0ac2).

The total momentum G12 and energy W12 supplied by the external force
to the charge between the times t1 and t2 are given by

G12 =

t2∫
t1

Fext(t)dt (7.3a)

and

W12 =

t2∫
t1

Fext(t) · u(t)dt (7.3b)

or in four-vector notation

Gi
12 = (cG12, W12) =

s2∫
s1

F i
extds . (7.4)
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Substituting F i
ext from (7.1) into (7.4) we obtain

Gi
12 = mc2 [ui(s2) − ui(s1)

]
− e2

6πε0

[
dui

ds
(s2) − dui

ds
(s1)
]

− e2

6πε0

s2∫
s1

ui duj

ds

duj

ds
ds + O(a) . (7.5)

If the velocity and acceleration of the particle are the same at times t1 and
t2, that is, at s1 and s2, the momentum-energy in (7.5) reduces to

Gi
12 = − e2

6πε0

s2∫
s1

ui duj

ds

duj

ds
ds + O(a) . (7.6)

In three-vector notation

ui duj

ds

duj

ds
= −γ

[
γ4

c5 |u̇|2 +
γ6

c7 (u · u̇)2
]

(u, c) (7.7)

so that (7.6) becomes

Gi
12 = (cG12, W12)

=
e2

6πε0c4

∫ t2

t1

[
γ4|u̇|2 +

γ6

c2 (u · u̇)2
]

(u, c)dt + O(a) . (7.8)

The integrand in (7.8) is just the momentum and energy radiated per unit
time by an accelerating point charge [35], [3, sec. 15]. Thus, (7.8) says that
the momentum and energy imparted to the charge by the externally applied
force during any time interval is equal to the momentum and energy radiated
by that charge, provided the initial and final velocities and accelerations are
the same. In other words, the dui/ds and d2ui/ds2 terms in the equation of
motion (7.1) represent reversible rates of change of momentum-energy, while
the uiduj/ds duj/ds term represents the irreversible rate of change of mo-
mentum-energy that radiates to the far field.

The reversible dui/ds term is, of course, the usual rate of change of mo-
mentum-energy four-vector in the relativistic version of Newton’s second law
of motion

mc2 dui

ds
= mγ

d
dt

(γu, γc) . (7.9)

Its integral over a proper time interval determines the reversible change in
kinetic momentum-energy of the particle during that time interval.

The reversible d2ui/ds2 term can be written in three-vector form as

− e2

6πε0

d2ui

ds2 = − e2γ

6πε0c3

d
dt

{[
γ2u̇ +

γ4

c2 (u · u̇)u
]

,
1
c
(γ4u · u̇)

}
. (7.10)
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When this perfect differential is integrated over proper time it yields a re-
versible change in momentum-energy that cannot be classified as either a
change in kinetic momentum-energy or a change in radiated momentum-en-
ergy (which is irreversibly lost to the far field). Schott [36] called the energy
portion of (7.10), that is

− e2γ4

6πε0c4 (u · u̇) (7.11)

the “acceleration energy” because it “must be regarded as work stored in
the electron in virtue of its acceleration.” Therefore, this part of (7.10) is
sometimes referred to as the Schott energy term, although Abraham [3, sec.
15] had previously separated the reversible momentum as well as the reversible
energy of (7.10) in his derivation of the radiation reaction for a charge moving
with arbitrary velocity.

Before and after the external force is applied, the acceleration of the charge
is zero (ignoring the pre-acceleration that will be discussed in Chapter 8) so
that the Schott acceleration momentum-energy is zero and, as expected, the
momentum-energy that has been supplied by the external force has been
converted entirely to kinetic and radiated momentum-energy. However, while
the external force is being applied, the charge is accelerating and the momen-
tum-energy supplied by the external force is converted to “Schott acceleration
momentum-energy,” as well as kinetic and radiated momentum-energy.

A physically intuitive understanding of the “acceleration” momentum-en-
ergy can be gained by looking at (7.1) for time harmonic motion. With the
help of (7.7), (7.9) and (7.10), the momentum and energy equations of motion
in (7.1) may be written separately in three-vector notation as

Fext = m
d(γu)

dt
− e2

6πε0c3

{
d
dt

[
γ2u̇ +

γ4

c2 (u · u̇)u
]

− γ4

c2

[
|u̇|2 +

γ2

c2 (u · u̇)2
]
u
}

+ O(a) (7.12a)

and

Fext · u = mc2 dγ

dt
− e2

6πε0c3

{
d
dt

(γ4u · u̇) − γ4
[
|u̇|2 +

γ2

c2 (u · u̇)2
]}

+ O(a).

(7.12b)
The first terms on the right-hand sides of (7.12) can be interpreted simply as
the rates of change of kinetic momentum and energy required to accelerate the
energy of formation of the moving charge. To understand the second terms on
the right-hand sides of (7.12), consider a charge oscillating rectilinearly with
sinusoidal frequency ω, so that the velocity is given by

u(t) = U0 sin(ωt) (7.13)

and the radiation reaction terms in the energy equation of motion (7.12b)
become
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− d
dt

(γ4u · u̇) = −U2
0 ω2 cos(2ωt) (7.14)

γ4
[
|u̇|2 +

γ2

c2 (u · u̇)2
]

= U2
0 ω2 cos2(ωt) (7.15)

when (u/c)2 � 1.
The irreversible reaction term (7.15) behaves as a time-harmonic radiated

power, that is, it has the time dependence of the Poynting vector integrated
over a closed surface in the far field. Its average over time has the positive
value U2

0 ω2/2. The reversible “acceleration” reaction term (7.14) behaves as a
reactive power whose average over time is zero. In other words, if the oscillating
charge were an antenna fed by a single-frequency input voltage and current,
(7.14) and (7.15) would contribute to the reactive and resistive (radiation
resistance) parts, respectively, of the input impedance of the antenna [37].
(The time rate of change of the kinetic energy of the oscillating charge has a
time dependence proportional to

U2
0 ω sin(2ωt) , (u/c)2 � 1 (7.16)

and thus it would also contribute to the reactive part of the input impedance
of the antenna.)

For a charge whose velocity and acceleration are continually increasing
with time, rather than oscillating, the reversible kinetic energy continually
increases, the irreversible radiated power increases, and more and more re-
versible Schott acceleration energy is taken from the electromagnetic fields
of the charge. A similar unlimited increase in the irreversible (radiated) and
reversible (reactive kinetic and Schott) energies occurs when the frequency of
an oscillating charge or electric dipole is continually increased, as one can see
from (7.14)–(7.16). However, the reactive energy taken from the oscillating
charge, although it can increase without limit by increasing the frequency, is
always returned to zero and supplied to the charge in an equal amount during
each half period of oscillation.

Before leaving this section, note that the quantity γ4
[
|u̇|2 + γ2(u · u̇)2/c2

]
can be substituted from (7.12b) to simplify the form of the equation of motion
(7.12a) to

γ2[Fext − (Fext · u)u/c2] = mγ3u̇ − e2γ

6πε0c3

d
dt

(γ3u̇) + O(a). (7.17a)

This form of the force equation of motion comes in handy in the next section
of this chapter and in Chapter 8. The power equation of motion (7.12b) can
be recast into the form

Fext · u = mc2 dγ

dt
− e2γ

6πε0c

(
d2γ

dt2
− γ3

c2 |u̇|2
)

+ O(a). (7.17b)
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7.1 Hyperbolic Motion

For relativistically uniform acceleration, which is defined as [32, secs. 5-3 and
6-11]

d2ui

ds2 + ui duj

ds

duj

ds
= 0 (7.18)

the reversible Schott reactive power cancels the radiated power and the equa-
tion of motion (7.1) reduces to that of an uncharged particle

F i
ext = mc2 dui

ds
+ O(a) (7.19)

that is, the time rate of change of kinetic momentum-energy equals the applied
force minus the O(a) terms. Because in the proper inertial reference frame
(7.18) reduces to simply ü = 0, that is, u̇ = constant, it is appropriate to
refer to the motion defined by (7.18) as relativistically uniform acceleration.
The charged particle radiates by drawing energy from the reactive fields of
the charge, the reactive fields continually being replenished by the increasing
acceleration of the charge.

Neglecting terms of O(a), equation (7.19) reduces to the Newtonian equa-
tion of motion in four-vector form

F i
ext = mc2 dui

ds
. (7.20)

Relativistically uniform acceleration or “hyperbolic motion” is described in
numerous physics texts [32]. Here we show that the equations (7.18) and
(7.20) cannot both be satisfied unless there is an inertial frame in which the
motion is rectilinear and the externally applied force is constant, such as when
a charge is placed in a uniform electrostatic field.

To prove this result, use the procedure for deriving (7.17a) to express the
three vector part of (7.18) as simply

d
dt

(γ3u̇) = 0 (7.21)

and write the three-vector part of (7.20) as

Fext = m
d
dt

(γu). (7.22)

The solution to (7.21) is
γ3u̇ = A0 (7.23)

where A0 is a constant vector. The result in (7.23) implies that the accelera-
tion of the charge perpendicular to the direction of A0 is zero. Consequently,
the velocity of the charge is constant in the direction perpendicular to the
direction of A0. In the inertial reference frame moving with this constant ve-
locity, the motion is rectilinear. Moreover, (7.18) and thus (7.21) still hold in
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this inertial reference frame in which the motion is rectilinear because (7.18) is
a Lorentz invariant expression. Therefore, in this rectilinear reference frame,
(7.22) and (7.23) become

Fext = m
d
dt

(γu) (7.24)

and
γ3u̇ =

d
dt

(γu) = A0. (7.25)

A comparison of (7.24) and (7.25) immediately reveals that

Fext = mA0 . (7.26)

In other words, relativistically uniform motion can only be achieved if there
exists an inertial reference frame in which the motion is rectilinear and the
externally applied force is equal to a constant, for example, an electron ac-
celerated by an electrostatic field E0 between two oppositely charged parallel
plates that are normal to the direction of motion of the charge. Except during
the short transition intervals when the electron enters and leaves the parallel
plates, the motion of the electron is determined entirely by the relativistic
Newtonian equation of motion

eE0 = m
d
dt

(γu). (7.27)

The problem of the motion of a charge between two parallel plates, including
its behavior during the entrance and exit transition intervals, is considered
in Section 8.2.4 after the equation of motion is modified to eliminate pre-
acceleration and pre-deceleration.

7.2 Runaway Motion

“Runaway solutions” are homogeneous solutions to (7.1). In other words, the
Schott reactive power cancels both the radiated power and the kinetic power
so that (7.1) is satisfied without an applied external force

d2ui

ds2 = −ui duj

ds

duj

ds
+

6πε0mc2

e2

dui

ds
(7.28)

(neglecting O(a) terms), or in three-vector notation

d
dt

[
γ2u̇ +

γ4

c2 (u · u̇)u
]

=
γ4

c2

[
|u̇|2 +

γ2

c2 (u · u̇)2
]
u+

6πε0mc3

e2

d(γu)
dt

(7.29a)

d
dt

(γ4u · u̇) = γ4
[
|u̇|2 +

γ2

c2 (u · u̇)2
]

+
6πε0mc5

e2

dγ

dt
. (7.29b)
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A formal, general solution to the homogeneous equation of motion (7.29a)
can be found by rewriting this equation in the shortened form given in (7.17a),
namely

d
dt

(γ3u̇) − 1
τe

γ2u̇ = 0 , τe =
e2

6πε0mc3 (7.30)

Recasting this equation as

d
dt

(γ3u̇) − 1
τeγ

(γ3u̇) = 0 (7.31)

allows us to solve for γ3u̇ as

γ3u̇ = A1 exp

⎛
⎝ 1

τe

t∫
0

dt′

γ(t′)

⎞
⎠+ A2 (7.32)

wherein A1 and A2 are arbitrary constants. Since 1/γ(t) =
√

1 − u2(t)/c2 ,
the integral in (7.32) approaches a positive infinite value unless u(t) → c.
Therefore, as t → ∞, the speed of the particle “runs away” toward the speed
of light, even though there is no external force applied.

Schott derived the runaway motion as part of his solution to the equation
of rectilinear motion in his 1915 paper [36, eq. (21)]; see Section 8.1. He called
this motion “exponential motion” and argued “that the exponential motion
is not realizable experimentally, at any rate not with electric fields at our
command.”

Although these runaway solutions are presumably not physically realiz-
able, they are mathematically valid homogeneous solutions to the differential
equation of motion that do not violate conservation of momentum-energy.
Both the increasing reversible kinetic momentum-energy and the increasing
irreversible radiated momentum-energy are taken entirely from the reservoir
of reversible Schott reactive momentum-energy that is continually being sup-
plied by the increasing acceleration of the charge. It is emphasized that the
unlimited supply of Schott reactive momentum-energy for the runaway modes
is produced by the unlimited increase in the four-acceleration of the particle,
and is not dependent upon the radius of the charge approaching zero or mass
of the particle approaching infinity.

Despite the fact that the homogeneous runaway solutions do not violate the
conservation of momentum-energy, it is shown in Chapter 8 that the runaway
behavior is eliminated from the complete solution of (7.1) by invoking the
asymptotic condition of zero acceleration as t approaches infinity.

In an attempt to get an equation of motion that involves only the kinetic
and radiated momentum-energy of a charged particle, one may be tempted
to simply discard the reactive momentum-energy term in (7.1) or its three-
vector equivalent in (7.12). Unfortunately, the resulting simplified equation
of motion would no longer be consistent with F i

extui equal to zero. In terms
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of the three-vector equations, the scalar product of u with (7.12a) would no
longer equal (7.12b).

It seems quite remarkable that without the insight and transformations
of special relativity, Abraham was able to determine the reversible (reactive)
parts of the radiation reaction force and power in (7.12) from a knowledge
of the radiated momentum and energy of an accelerating point charge; then
prove that the solution was unique [3, sec. 15]. (In the four-vector notation
of (7.1) and with the transformations of special relativity, the determination
of the reversible part of the radiation reaction from the radiated part is an
elementary exercise. Uniqueness of solution follows from the fact that a four-
vector which reduces to zero in the proper inertial frame must be zero in an
arbitrary inertial frame.)
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Solutions to the Equation of Motion

As a preliminary to solving the equation of motion (7.1) for the uniformly
charged sphere of radius a and total charge e, write the magnitude of the four
acceleration in (7.1) as

duj

ds

duj

ds
=

(w · w′)2

γ2c6 − w′2

c4 (8.1a)

where w is defined in terms of the velocity of the center of the shell by

w = γu, γ = (1 − u2/c2)−1/2 = (1 + w2/c2)1/2 (8.1b)

and the primes denote derivatives with respect to the proper time

dτ = dt/γ . (8.1c)

Insertion of (8.1) into (7.1) yields the three-vector equation for w

γFext(τ) = mw′ − e2

6πε0c3

[
w′′ − 1

c2

(
w′2 − (w · w′)2

c2γ2

)
w
]

+ O(a). (8.2)

For rectilinear motion in the x direction

Fext(τ) = Fext(τ)x̂ (8.3a)

w = wx̂ (8.3b)

and (8.2) becomes

γFext(τ) = mw′ − e2

6πε0c3

[
w′′ − 1

c2

w′2w
(1 + w2/c2)

]
+ O(a) . (8.4)

(In (8.2)–(8.4) and throughout the rest of this chapter, the vector and
scalar functions Fext(τ) and Fext(τ) are compact notations for Fext[t(τ)] and
Fext[t(τ)], respectively.) Following Schott [36] we see that the substitution
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w/c = sinh(V/c) (8.5)

reduces this equation for rectilinear motion to the simpler differential equation

Fext(τ)
m

= V ′(τ) − τeV ′′(τ) +
O(a)
m

(8.6)

where

τe =
e2

6πε0mc3 . (8.7)

If m and e equal the mass and charge of an electron, the time interval τe is
equal to the amount of time it takes light to travel four thirds the classical
radius of the electron.

8.1 Solution to the Equation of Rectilinear Motion

If the O(a)/m terms in (8.6) are neglected, the most general solution to the
resulting equation of rectilinear motion can be written as

V ′(τ) = − exp(τ/τe)

⎡
⎣ 1

mτe

τ∫
0

Fext(τ ′) exp(−τ ′/τe)dτ ′ + A

⎤
⎦ ,

−∞ < τ < ∞ (8.8)

where the external force is applied at τ = 0 (t = 0) and is assumed zero for
all time τ < 0 (t < 0). Integration of (8.8) with respect to the proper time τ
gives the general solution for V as

V(τ) = B +
1
m

τ∫
0

Fext(τ ′)dτ ′

− exp(τ/τe)

⎡
⎣ 1

m

τ∫
0

Fext(τ ′) exp(−τ ′/τe)dτ ′ + τeA

⎤
⎦ ,

−∞ < τ < ∞ . (8.9)

Integrating (8.9) with respect to the proper time, one could also obtain the
position of the center of the shell. This would introduce a third arbitrary
constant (A and B being the other two) that can be determined by specifying
the position of the particle at a certain time, or in the remote past.

To determine the two remaining constants, A and B, two other boundary
conditions are required. This is one more constant and boundary condition
than is required by Newton’s second law of motion for uncharged particles,
which involves only the first derivative of velocity, rather than the first and
second derivatives in (8.6). At first thought, since the external force is not
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applied until τ = 0, one might set the velocity and acceleration equal to zero
at τ = 0 to obtain zero for both the constants A and B. Then (8.9) would
become

V(τ) =
1
m

τ∫
0

Fext(τ ′)dτ ′ − exp(τ/τe)
m

τ∫
0

Fext(τ ′) exp(−τ ′/τe)dτ ′,

−∞ < τ < ∞ . (8.10)

Unfortunately, there is a serious problem with the solution (8.10). The velocity
function V(τ) and all its derivatives approach infinity [u(t) → c] as τ → ∞,
even when the external force is applied for a finite time.

Returning to (8.8) or (8.9) we see that these “runaway solutions” (called
“exponential motion” by Schott [36]; see Section 7.2) are eliminated as τ → ∞
if and only if the constant A is given by

A = − 1
mτe

∞∫
0

Fext(τ ′) exp(−τ ′/τe)dτ ′. (8.11)

Equation (8.11) ensures that the acceleration in (8.8) approaches zero as τ →
∞, if the external force approaches zero as τ → ∞; and thus (8.11) can be
considered a result of the “asymptotic condition” [12], [32]

lim
t→∞ u̇(t) = 0 (8.12a)

when
lim

t→∞ Fext(t) = 0 . (8.12b)

(Rohrlich [32, sec. 8-2] points out that the asymptotic condition can be based
on a fundamental “principle of undetectability of small charge,” which asserts
that the motion of a charged particle must approach that of a neutral particle
in the limit as the charge approaches zero.) After insertion of A from (8.11),
equations (8.8) and (8.9) can be written as

V ′(τ) =
1

mτe

∞∫
τ

Fext(τ ′) exp[−(τ ′ − τ)/τe]dτ ′, (8.13a)

−∞ < τ < ∞

and

V(τ) = B +
1
m

∞∫
τ

Fext(τ ′) exp[−(τ ′ − τ)/τe]dτ ′ +
1
m

τ∫
0

Fext(τ ′)dτ ′,

−∞ < τ < ∞ (8.13b)

or
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V(τ) = B +
1
m

∞∫
0

Fext(τ + τ ′) exp(−τ ′/τe)dτ ′ +
1
m

τ∫
0

Fext(τ ′)dτ ′ ,

−∞ < τ < ∞ . (8.13c)

A final boundary condition is needed to evaluate the constant B in (8.13b)–
(8.13c). One can evaluate B by specifying the initial velocity, but this pro-
cedure leads to a velocity in the remote past (τ → −∞) that depends on
the external force, which we have assumed is applied at τ = 0. Specifically, if
one enforces the initial condition V(0) = 0 in (8.13b)–(8.13c), then both the
constant B and the velocity function in the remote past are given by

B = V(−∞) = − 1
m

∞∫
0

Fext(τ ′) exp(−τ ′/τe)dτ ′. (8.14)

Physically, it is much more appealing to demand that in the remote past the
velocity be zero or a constant that is independent of the applied force. Thus,
if the final boundary condition on the motion of the charge is an asymptotic
condition on the velocity in the remote past; in particular, for zero velocity in
the remote past

lim
t→−∞ u(t) = 0 (8.15)

then B = 0 and (8.13c) becomes

V(τ) =
1
m

∞∫
0

Fext(τ + τ ′) exp(−τ ′/τe)dτ ′ +
1
m

τ∫
0

Fext(τ ′)dτ ′

=
1
m

∞∫
τ

Fext(τ ′) exp[−(τ ′ − τ)/τe]dτ ′ +
1
m

τ∫
0

Fext(τ ′)dτ ′

= τeV ′(τ) +
1
m

τ∫
0

Fext(τ ′)dτ ′ , −∞ < τ < ∞ . (8.16)

Equation (8.16), combined with the definitions (8.5) and (8.1b), is the
general solution for the rectilinear velocity u of the center of the shell of
charge for all time under the two asymptotic conditions that the acceleration
approaches zero in the distant future (for zero external force in the distant
future) and the velocity approaches zero in the remote past. Of course, the
external force must be well-behaved enough for the integrals in (8.16) to exist,
and the solution was obtained under the assumption that the terms of O(a)/m
in (8.6) could be neglected.

The solution (8.16) exhibits a number of peculiarities. The most unsettling
one, pre-acceleration, or acceleration before the external force is applied at
τ = 0, is considered in Section 8.2. A second peculiarity, namely that the
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velocity at any instant of time depends on the externally applied force at all
future times, is discussed near the end of Section 8.2.2.

A third peculiarity with the solution (8.16) is that if the force is zero after
it is applied over a finite time interval, 0 ≤ τ < τ0, the velocity function
reduces to

V(τ) = V(τ0) =
1
m

τ0∫
0

Fext(τ ′)dτ ′, τ > τ0 (8.17a)

the final velocity function one would obtain if the radiation term V ′′ in (8.6)
(as well as the O(a)/m terms) were ignored entirely. This result in (8.17a) is
not so objectionable, if one realizes from (8.5) and (8.1b) that

γ(t)u(t) = γ(t0)u(t0) = c sinh

⎡
⎣ 1

mc

τ0∫
0

Fext(τ ′)dτ ′

⎤
⎦


= 1
m

t0∫
0

Fext(t′)dt′, t > t0 (8.17b)

so it does not imply that the radiated momentum-energy is zero, or that the
impulse and work supplied to the charged sphere by the external force is con-
verted to kinetic energy alone. (Note that

∫ τ0

0 Fext(τ ′)dτ ′ 
=
∫ t0
0 Fext(t′)dt′.)

To see this, integrate (7.12) over all time that the velocity is changing
(−∞ < t < t0) to get (for rectilinear motion)

t0∫
−∞

Fextdt =

t0∫
0

Fextdt = mγ(t0)u(t0) +
e2

6πε0c5

t0∫
−∞

γ6u̇2u(t)dt (8.18a)

t0∫
−∞

Fextudt =

t0∫
0

Fextudt = mc2[γ(t0) − 1] +
e2

6πε0c3

t0∫
−∞

γ6u̇2(t)dt. (8.18b)

The reversible Schott acceleration momentum-energy in (7.12) does not
contribute to (8.18) because the final acceleration and the acceleration in the
remote past are both zero. The first terms on the right-hand sides of (8.18) give
the total change in the kinetic momentum-energy of the charged sphere, while
the second terms give the total momentum-energy radiated by the charged
sphere. During pre-acceleration (−∞ < t < 0) only the runaway solution is
present, and, as explained in Chapter 7, the Schott momentum-energy cancels
both the kinetic and radiated momentum-energy. If the final velocity of the
charge also equals zero (u(t0) = 0) the change in the kinetic momentum-en-
ergy is zero and (8.18) confirms that the entire impulse and work delivered
by the external force is converted to radiated momentum-energy. Note that
even when the final velocity (as well as velocity in the remote past) is zero,
we have the inequalities
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t0∫
0

Fextdt 
= e2

6πε0c5

t0∫
0

γ6u̇2u(t)dt (8.19a)

and
t0∫

0

Fextudt 
= e2

6πε0c3

t0∫
0

γ6u̇2(t)dt . (8.19b)

That is, in order for the total momentum and energy radiated to equal the
impulse and work delivered by the externally applied force when the final
velocity (and velocity in the remote past) are zero, the integration of the
radiated time rate of change of momentum and energy must include the pre-
acceleration, because the initial velocity u(0) is not zero in the pre-acceleration
solution (8.16).

8.1.1 Formal Solution to the General Equation of Motion

A formal solution to the general equation of motion can be found from its
form given in (7.17a), which can be rewritten as

γ2

m

[
Fext − (Fext · u)u/c2] = γ3u̇ − τeγ

d
dt

(γ3u̇) (8.20)

with the O(a)/m terms neglected. The solution to this first order differential
equation for (γ3u̇), under the asymptotic condition in (8.12) is given for all t
as

γ3(t)u̇(t) =
1

mτe

∞∫
t

γ(t′)
{
Fext(t′) − [Fext(t′) · u(t′)]u(t′)/c2

}

· exp
[

− (1/τe)
∫ t′

t

γ−1(t′′)dt′′
]
dt′ (8.21a)

which can be rewritten as

γ3(τ)u̇(τ) =
1

mτe

∞∫
τ

γ(τ ′)
{
Fext(τ ′) − [Fext(τ ′) · u(τ ′)]u(τ ′)/c2

}

· exp[−(τ ′ − τ)/τe]dτ ′ (8.21b)

after making the change of variable dτ = dt/γ.
The equations in (8.21) represent a rigorous solution for the acceleration

u̇(t) in terms of both u(t) and Fext(t). However, because u(t) is unknown,
(8.21) is not a useful solution for calculating u̇(t) or u(t). Nonetheless, the
solution (8.21) reveals that the acceleration u̇(t) of the charged sphere does
not vanish before the external force is applied (say at t = τ = 0) and thus the
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solution to the general equation of motion, like the solution to the rectilinear
equation of motion derived in Section 8.1, exhibits pre-acceleration. If the
external force Fext(t) applied to the charged sphere is zero for t > t0, (8.21)
also reveals that the acceleration u̇(t) = 0 for t > t0, but that the solution
anticipates the shutting off of the external force by displaying pre-deceleration.

Both the rectilinear solution in (8.16) and the general solution in (8.21b)
also reveal that the pre-acceleration (and pre-deceleration) diminishes as the
externally applied force varies more slowly on the scale of τe [38].

8.2 Cause and Elimination of the Pre-Acceleration

The solution (8.21) to the general equation of motion and the solution (8.16)
to the rectilinear equation of the motion both predict nonzero acceleration
before the external force is applied at t = 0 or τ = 0. One may be tempted
to simply set the acceleration or velocity equal to zero for τ < 0 to eliminate
the pre-acceleration in (8.16), for example. However, the resulting solution
does not satisfy the original differential equation (8.6) (with O(a)/m terms
neglected) because delta functions and derivatives of the delta functions are
introduced into the derivatives of the velocity at τ = 0. For example, if the
external force is a step function applied at τ = 0

Fext(τ) =
{

0 , τ < 0
F0 , τ ≥ 0 (8.22)

then the solution (8.16) becomes simply

V(τ) =
F0τe

m

{
exp(τ/τe) , τ ≤ 0

1 + τ/τe , τ ≥ 0 .
(8.23)

We see that (8.23) satisfies the equation of motion (8.6) (with the O(a)/m
terms neglected) for all τ , whereas setting V(τ) = 0 for τ < 0 in (8.23) violates
the equation of motion by introducing delta and doublet functions in V ′(τ)
and V ′′(τ) at τ = 0. Similarly, a spurious delta function is introduced into
V ′′(τ) by differentiating (8.23) and setting the acceleration zero for τ < 0,
regardless of the initial velocity.1 (Note that the condition limτ→∞ Fext(τ) =
m limτ→∞ V ′(τ) = F0 for this step-function external force in (8.16) replaces
the asymptotic condition in (8.12).)

Although the noncausal pre-acceleration decays in the past at the rapid
rate of 1/(2.718 · · · ) in the proper time interval τe that light takes to travel 4/3
the classical radius of the electron if m and e are the mass and charge of the
1 In Section 8.2.2 we show that a rigorous derivation of the self force near the

nonanalytic points in time of the external force (here at τ = 0) allows for delta-
like functions that eliminate the noncausal pre-acceleration to be added to the
original equation of motion immediately after τ = 0.
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electron, it is disconcerting that the pre-acceleration appears in the solution
to the equation of motion because the equation of motion is based on causal
(retarded-potential) solutions to Maxwell’s equations. It is not surprising that
the equation of motion of a charged particle allows homogeneous solutions
like the runaway modes, which are not present in Newton’s second law of
motion for uncharged particles, because the radiation reaction introduces time
derivatives of acceleration into the equation of motion. The disturbing feature
of the equation of motion is that when the asymptotic condition in (8.12)
is applied to eliminate the runaway modes from the inhomogeneous solution,
noncausal pre-acceleration cannot be avoided for a solution that remains well-
behaved at t = τ = 0, the time the external force is first applied.

The cause of the pre-acceleration solution will be determined by returning
to the derivation of the equation of motion of the extended model of the
electron. Before doing so, however, let us show that the pre-acceleration is
not eliminated by including the higher order terms in the equation of motion
(O(a)/m terms in the equation of rectilinear motion (8.6)).

The pre-acceleration solution (8.16) is a solution to (8.6) when the O(a)/m
terms are negligible. If the mass m is replaced by mes = e2/(8πε0ac2), then
one can obtain sufficient conditions for the O(a)/mes terms to be negligible
in the proper frame (u = 0) by returning to the series expansion for the self
electromagnetic force (see (D.17) in Appendix D) and noting that the linear
terms of O(a)/mes in the proper-frame version of (8.6) are negligible if the
sum

2c

3a

∞∑
n=3

(
−2a

c

)n 1
n!

dnu(t)
dtn

(8.24a)

in the proper frame of reference of the charge is negligible compared to the
first two terms on the right-hand side of (8.6). For this sum to be negligible,
it is sufficient that

2a

c

∣∣∣∣dn+1u
dtn+1

∣∣∣∣� (n + 1)
∣∣∣∣dnu
dtn

∣∣∣∣ , n = 2, 3, . . . . (8.24b)

Moreover, it can be shown that the nonlinear O(a)/mes terms are negligible
compared to the first two terms on the right-hand side of the proper-frame
version of (8.6) if, in addition to the conditions in (8.24b), we also have that
in the proper reference frame

a

c

∣∣∣∣dudt

∣∣∣∣� c (8.24c)

and
a

c

∣∣∣∣d2u
dt2

∣∣∣∣�
∣∣∣∣dudt

∣∣∣∣ . (8.24d)

The conditions (8.24b)–(8.24d) are sufficient conditions for neglecting the
terms in the proper-frame equation of motion beyond the radiation reaction
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term. The conditions in (8.24b) and (8.24d) say that the fractional change in
the first and higher time derivatives of velocity of the charge in the proper
frame is small during the time interval it takes light to traverse the charge
distribution. The condition (8.24c) says that the velocity of the charge changes
by a small fraction of the speed of light in the time interval light takes to
traverse the charge distribution.

The pre-acceleration solution (8.16) (with mes replacing m) behaves as
exp[3cτ/(4a)] for τ < 0 and thus does not satisfy the condition that (8.24a)
is negligible compared to the radiation reaction term because

dn+1

dτn+1 exp[3cτ/(4a)] =
3c

4a

dn

dτn
exp[3cτ/(4a)]. (8.25)

(For the sake of argument, we are assuming that the conditions on the deriv-
atives of the velocity function V for neglecting the O(a) terms in (8.6) are
at least as strong as those on the derivatives of the proper-frame velocity in
(8.24b)–(8.24d).) Moreover, the nonlinear O(a)/mes terms in (8.6) for this
pre-acceleration solution have (exp[3cτ/(4a)])n dependence with n ≥ 2 and
thus the nonlinear O(a)/mes terms cannot cancel the linear O(a)/mes terms
in this pre-acceleration solution. Thus, one could initially conclude that the
pre-acceleration solution in (8.16) may not be a valid solution to the equation
of motion (8.6) for the charged insulator of radius a when the O(a)/mes terms
are retained.

Unfortunately, when the O(a)/mes terms are retained, the pre-acceleration
(runaway solution for τ < 0) is not eliminated, just the time dependence of
the pre-acceleration is altered. Specifically, the analyses of Herglotz [39] and
Wildermuth [40] show that runaway solutions to the linearized, homogeneous
form of our equation of motion (7.1) exist for all time, so that pre-acceleration
exists for t < 0, regardless of how many linear higher order terms are included
in the linearized equation of motion [41]. (These results of Herglotz and Wil-
dermuth apply to the charged insulator even when mins 
= 0 as long as the
sum of the bare mass and material mass of the insulator, M0 + mins, is less
than zero. This condition is met as a → 0 because the bare mass has the
negative value of M0 = −mes/3 and even when the mass of the insulator is
not zero, the value of the sum mins − mes/3 → −mes/3 as a → 0.)

The analyses of Herglotz and Wildermuth are approximate in that they
neglect all O(a)/mes terms involving nonlinear products of the time derivatives
of velocity in the proper-frame equation of motion (see Section 8.4). However,
the analysis of motion of the two-charge (dumbbell) problem [42], although
it neglects the self force of each individual charge, includes nonlinear terms
and also exhibits the existence of runaway solutions. Thus, in general, the
inclusion of higher order terms in the equation of motion fails to eliminate the
pre-acceleration, whether or not the mass is kept at a fixed value as a → 0.
This conclusion is also confirmed by the work of Bauer and Dürr [43] on the
nonrelativistically rigid model of the extended electron.
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8.2.1 Cause of the Pre-Acceleration

The cause of the pre-acceleration can be found by examining the assumptions
involved in the derivation of the equation of motion. In Chapters 2 through
5 and the Appendices, the equation of motion was obtained for the extended
model of the electron as a spherical charged insulator of radius a. To simplify
the discussion, concentrate on the force equation of motion (7.12a) in the
proper frame of reference of the charged insulator

Fext(t) = mu̇ − e2

6πε0c3 ü + O(a) . (8.26)

As explained in Section 5.1, the rest mass, or coefficient of the u̇ term
in (8.26), is determined ultimately, not from the electromagnetic self force,
but from the relativistic generalization of Newton’s second law of motion and
the Einstein mass-energy relation. In particular, the rest mass must equal the
total energy of formation of the charged insulator divided by c2.

The ü and higher order reaction terms in the equation of motion (8.26)
are determined from the derivation of the self electromagnetic force. This
derivation, outlined in Appendix A, depends upon expanding the position,
velocity, and acceleration of each element of charge at the retarded time (t′ =
t − R′(t′)/c) in a Taylor series about the present time (t). For example, the
velocity of the element of charge at r′ in the proper frame is expanded as

u(r′, t′) = u
(
r′, t − R′(t′)

c

)
= −u̇(r′, t)

R′(t′)
c

+ ü(r′, t)
R′2(t′)

2c2 + · · · (8.27a)

and similarly for u̇(r′, t′), where the distance R′(t′) has the Taylor series ex-
pansion

R′(t′) = R(t) − R(t)R · u̇(r′, t)
2c2 + · · · . (8.27b)

These Taylor series expansions are valid provided the velocity function u(r′, t′)
is an analytic function of complex time t′ for

|t′ − t| ≤ [R′(t′)/c]max . (8.28)

(Analyticity of u(r′, t′) implies the analyticity of R′(t′) and u̇(r′, t′) through
integration and differentiation, respectively.) For the self-force calculation in
the proper frame of reference, R′(t′) does not exceed a value of about 2a
(assuming the velocity does not change rapidly between t′ and t; in other
words, assuming the velocity change is a small fraction of the speed of light
during the time it takes light to traverse the charge distribution — a condition
implied by (8.24c)), and thus (8.28) can be rewritten as

|t′ − t| ≤ Δta (8.29a)

where
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Δta ≈ 2a

c
. (8.29b)

Even if the magnitude of the velocity change (Δu) during the time 2a/c is a
significant fraction of the speed of light, (8.29b) can be replaced by

Δta ≈ 2a

c

1
1 − Δu/c

(8.29c)

which still approaches zero as a → 0 for Δu < c.
Assume that the external force Fext(t) has at most a finite jump discon-

tinuity 2 across t = 0 and that after the external force is applied at t = 0,
the external force Fext(t), and the velocity of the charge u(r, t), is an analytic
function of t in a Δta-wide strip of the complex t plane about the real t axis
for t > 0. Then the Taylor series expansions hold for t > Δta, the equation
of motion in (8.26) is valid for t > Δta, and with the O(a) terms neglected
it implies that u(t) is an analytic function of time for t > Δta if and only
if Fext(t) is an analytic function of time for t > Δta.3 However, since the
external force and velocity are zero for t < 0, the velocity cannot be an
analytic function of t′ for t′ in the interval of (8.29a) if t is less than Δta (and
t ≥ 0). Also, note that because t′ ≤ t and u(r, t) with all its time derivatives
are zero for t < 0, the left- and right-hand sides of the equations in (8.27) are
equal for t < 0. In all then, the Taylor series expansions in (8.27) are
invalid during (and only during) the time interval

0 ≤ t ≤ Δta . (8.30)

Consequently, the following expression obtained by inserting equation (A.10)
into (A.1) of Appendix A for the self electromagnetic force in the proper
frame is not valid during this short transition time interval (8.30) in which
the external force is first applied

Fem(t) =
1

4πε0

∫∫
charge

{
R̂
R2 +

1
2c2R

[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ + u̇

]

+
3
8
R̂
c4

[
(R̂ · u̇)2 − |u̇|2

]
+

3(R̂ · u̇)u̇
4c4 +

2ü
3c3 + O(R)

}
de′de, u = 0. (8.31)

2 A finite external force ensures that the external force is integrable in time and
that the acceleration outside the transition interval in (8.30) is finite; see the last
paragraph of Section 8.2.2.

3 If a solution to the differential equation Fext(t) = mu̇(t) − [e2/(6πε0c
3)]ü(t)

(which holds for t > Δta) exists in a complex neighborhood of the real time t,
then u̇(t) and ü(t) exist in this complex neighborhood of real t, and thus u(t) is
an analytic function of time if Fext(t) is an analytic function of time at time t.
If Fext(t) is not analytic at some time t, then u(t) cannot be analytic at time t
because if it were the right-hand side of the differential equation would be analytic
at time t while the left-hand side would not.



78 8 Solutions to the Equation of Motion

One can see directly from equation (A.2) of Appendix A how the integral
in (8.31) should be modified for t < R′(t′)/c. Specifically, for t < R′(t′)/c, the
functions u(r′, t′) and u̇(r′, t′) are identically zero so that dE(r, t) in (A.2)
reduces to de′R̂′/(4πε0R

′2). Thus, a simple modification to the integrand of
(8.31), shown in the following equation (8.32), produces an expression for the
self electromagnetic force that is valid for all time in the proper frame

Fem(t) =
1

4πε0

∫∫
charge

{
R̂′

R′2 + h

(
t − R′(t′)

c

)[
R̂
R2 − R̂′

R′2 +
1

2c2R

·
[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ + u̇

]
+

3
8
R̂
c4

[
(R̂ · u̇)2 − |u̇|2

]

+
3(R̂ · u̇)u̇

4c4 +
2ü
3c3 + O(R)

]}
de′de, u = 0 (8.32)

where h(t) in (8.32) is the unit step function defined by

h(t) =
{

0 , t < 0
1 , t ≥ 0 .

(8.33)

Although the step function appearing in (8.32) represents a minor mod-
ification, it prevents the closed-form evaluation of the double integration in
(8.32) during the time interval (8.30). Nonetheless, for t < 0, the step function
h(t−R′(t′)/c) = 0 and R′(t′) = R. Therefore, since

∫ ∫
charge R/R2de′de = 0,

the value of the integral in (8.32) is zero for t < 0, and for t > Δta, the
integral yields the usual expression (A.11) for the self electromagnetic force
in the proper frame.

During the transition time interval in (8.30) after the finite external force
is first applied, there appears to be no simple way to evaluate the double in-
tegral in (8.32) to determine the self electromagnetic force because the time
dependence of u(r′, t′), and thus R′(t′) in h[t−R′(t′)/c], is unknown a priori.4

Nonetheless, the difference between the correct expression for the self electro-
magnetic force in (8.32) and the original expression in (8.31) implies that a
transition force must be added to the original self electromagnetic force in
(A.11) during the time interval in (8.30). In the following section, we show
that such a transition force can be chosen to eliminate the pre-acceleration
from the equation of motion.

Abraham also realized that the traditional series representation of the self
electromagnetic force became invalid for “discontinuous movements” of the
charge. In [3, sec. 23] he states, “These two forces [electromagnetic mass term

4 It was argued in the first edition of the book that the self electromagnetic force
in (8.32) approached zero as O(t2) from positive values of t, but this argument
assumed that u(r′, t′) was slowly varying in the transition interval (8.30), and
this is not necessarily the case.
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plus radiation reaction] are basically nothing other than the first two terms
of a progression which increases in accordance with increasing powers of the
electron’s radius a. . . . Because the internal force is determined by the velocity
and acceleration existing in a finite interval preceding the affected point in
time, such a progression is always possible when the movement is continuous
and its velocity is less than the speed of light. . . . The series will converge
more poorly the closer the movement approaches a discontinuous movement
and the velocity approaches the speed of light . . . . It fails completely for
discontinuous movements. . . . Here, other methods must be employed when
computing the internal force.” Abraham goes on to derive the radiated energy
and momentum of a charged sphere with discontinuous velocity [3, sec. 25],
[44]. He also derives Sommerfeld’s general integral formulas for the internal
electromagnetic force [45]. Neither he nor Sommerfeld, however, evaluates or
interprets these general integrals except to show they yield a null result for a
charged sphere moving with constant velocity.

Schott [46], [16, p. 283] also concludes that “the approximation [used to
obtain the Lorentz-Abraham equation of motion] fails during an interval of
time, which is comparable with the time required by an electromagnetic wave
to pass across the electron and includes the instant at which the discontinuity
occurs.” More recently, Valentini [47] observes that “the usual derivations of
the Lorentz-[Abraham-]Dirac equation are only valid at times such that [the
position of and force applied to the particle] are analytic functions [of time],”
and that nonanalyticity of these functions is responsible for the noncausal
pre-acceleration in the solution to the Lorentz-Abraham-Dirac equation of
motion.

8.2.2 Elimination of the Pre-Acceleration

We have shown that (8.32) rather than (8.31) is the formal expression for the
self electromagnetic force on the spherical shell of charge that holds for all
time t in the proper inertial reference frame and reduces to (8.31) for t > Δta
and t < 0 under the assumptions that the externally applied force is zero
for t < 0, has at most a finite jump discontinuity across t = 0, and is an
analytic function of complex t about the real t axis for t > 0. As pointed out
in the previous subsection, however, the double integration over the charge in
(8.32) cannot, in general, be evaluated in closed form during the time interval
0 ≤ t ≤ Δta because of the presence of the step function h(t − R′(t′)/c) in
the integrand of (8.32) and because of the unknown behavior of R′(t′) during
this time interval. Nonetheless, (8.32) can still be re-expressed as a differential
equation that leads to an equation of motion free of pre-acceleration.

To do this, begin with the evaluation of (8.32) for t > Δta (or t < 0).
Then (8.32) equals (8.31) which is simply the original self force evaluated in
(A.11), that is

Fem(t) = − e2

6πε0ac2 u̇ +
e2

6πε0c3 ü + O(a) , t > Δta, t < 0 . (8.34)
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Although (8.32) cannot be evaluated in closed form in the interval 0 ≤
t ≤ Δta, we can see that the step function in (8.32) changes the coefficients
of u̇ and ü in the equation of motion during this time interval. Thus, we can
formally express the self electromagnetic force for t ≥ 0 as

Fem(t) = − e2

6πε0ac2 η1(t)u̇ +
e2

6πε0c3 η2(t)ü + O(a) (8.35)

where the functions η1(t) and η2(t) equal zero at t = 0, equal 1 for t > Δta
and t < 0, and have some unknown, possibly rapid variation that depends on
a and the behavior of u(r′, t′) (and thus R′(t′)) in the interval 0 ≤ t ≤ Δta.
Following the procedure used in Section 5.1, we assume the relativistic version
of Newton’s second law of motion requires that the external force applied to
a charged particle should equal, apart from the radiation reaction and the
forces of order a, the time derivative of momentum of the particle. That is,

Fext(t) = mu̇(t) − η2(t)
e2

6πε0c3 ü(t) + O(a) (8.36)

where m = mes + mins is the rest mass of the particle (charge plus in-
sulator) and the required bare mass term is no longer (mes − mem)u̇ but
[mes−η1(t)mem]u̇.5 Since the functional time dependence of η2(t) is unknown,

5 The corrected equation of motion (8.36) can thus be re-expressed as

Fext(t) + Fem(t) = [M0 + mins + (1 − η1(t)) mem]u̇ (8.37)

where, as in Chapter 5, M0 = mes − mem. If one postulates a priori an equa-
tion of motion for a classical charged particle with specified rest mass m given
in the proper frame by Fext(t) + Fem(t) = (M0 + mins)u̇ = M u̇ without the
(1 − η1(t)) memu̇ term, an initial-value solution free of pre-acceleration and run-
away behavior does not generally exist for small values of a [43]. In other words,
for small enough a and a given rest mass m, causality is violated if one assumes
in an arbitrary inertial frame that the equation of motion has the form

Fext(t) +
∫

charge

ρ(r, t)[E(r, t) + u(r, t) × B(r, t)]dV = M
d(γu)

dt
(8.38)

regardless of the value chosen for the constant “material mass” M or the veloc-
ity u(r, t) [38], [49]. This result does not imply that Maxwell’s equations with
Lorentz forces are inconsistent, only that the postulated equation of motion in
(8.38) (which does not include the (1 − η1(t)) memu̇ term) is flawed for the clas-
sical model of an accelerating charged particle with a given charge e and rest
mass m. The more fundamental equation of motion that is used in (8.36) and its
relativistic generalization (8.43) equates the sum of the externally applied force
and the radiation reaction part of the self force to the rest mass of the particle
times the acceleration. As will be shown, this more fundamental equation of mo-
tion, unlike (8.38), allows for a well-behaved causal initial-value solution free of
runaway motion.
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divide the equation in (8.36) by η2(t) to get6

Fext(t)
η2(t)

=
m

η2(t)
u̇(t) − e2

6πε0c3 ü(t) + O(a) . (8.39)

We can rewrite this equation as

Fext(t) + fa(t) = mu̇(t) − e2

6πε0c3 ü(t) + O(a) (8.40)

where

fa(t) =
{

0 , t < 0
[Fext(t) − mu̇(t)] [1/η2(t) − 1] , t ≥ 0 .

(8.41)

Although the exact time dependence of the transition force fa(t) is unknown,
it vanishes outside the interval given in (8.30) and it may be a complicated
function of time whose contribution to the equation of motion in (8.40) does
not necessarily approach zero as a → 0. In other words, fa(t) may contain
delta functions and their time derivatives as a → 0. (For example, if the
actual u(t) has a jump across t = Δta as a → 0 and Fext(t) is finite, equation
(8.40) implies that fa(t) + O(a) contains a doublet function across t = Δta.)
In brief, a causal equation of motion with the correct rest mass of the charged
particle requires a transition force fa(t) to remove the pre-acceleration and a
modified bare mass term [mes − η1(t)mem]u̇ to produce the correct rest mass.

The modified proper-frame equation of motion in (8.40) can be rewritten

Fext(t) + fa(t)
m

= u̇ − τeü +
O(a)
m

(8.42)

where the time constant τe is the same as in (8.7). In an arbitrary inertial
reference frame, and in four-vector notation, (8.42) generalizes to

F i
ext + f i

a

mc2 =
dui

ds
− τec

(
d2ui

ds2 + ui duj

ds

duj

ds

)
+

O(a)
m

(8.43)

with the four-vector force given by

f i
a = γ (fa, fa · u/c) (8.44)

6 In the first edition of this book, we left the corrected equation of motion in the
form of (8.36), in which the function η2(t) was assumed to vary monotonically
from a value of zero at t = 0 to a value of unity at t = Δta. Although this simplified
approximation to η2(t) eliminated the pre-acceleration, a similar approximation
to the corrected equation of motion to eliminate pre-deceleration can lead to a
violation of energy conservation, as shown by Baylis and Huschilt [48]. The general
form (8.40) of the corrected equation of motion allows conservation of momentum
and energy while eliminating both pre-acceleration and pre-deceleration for the
extended charged insulator model, as demonstrated in Section 8.2.5.
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such that f i
a is zero outside the interval (0 ≤ s ≤ Δsa ≈ cΔta) and f i

aui = 0.
(Note that Δsa ≈ cΔta even if the initial velocity is not zero because Δsa is
an invariant and it equals cΔta in the proper inertial reference frame.)

The modified equation of motion (8.43) can be rewritten in three-vector
notation from (7.12) as

Fext + fa
m

=
d(γu)

dt
− τe

{
d
dt

[
γ

d
dt

(γu)
]
− γ4

c2

[
|u̇|2 +

γ2

c2 (u · u̇)2
]
u
}

+
O(a)
m

(8.45a)
and

(Fext + fa) · u
mc2 =

dγ

dt
− τe

{
d
dt

(
γ

dγ

dt

)
− γ4

c2

[
|u̇|2 +

γ2

c2 (u · u̇)2
]}

+
O(a)
m

(8.45b)

in which we have used the relations γd(γu)/dt = γ2u̇ + γ4(u · u̇)u/c2 and
γdγ/dt = γ4u · u̇/c2.

An extremely simple way to arrive at (8.43) (or (8.45)) is to ob-
serve that outside the transition interval this equation holds rigor-
ously without the transition function (under the assumption that
the sum of the external force and the radiation reaction part of
the self force equals the rest mass times the relativistic acceler-
ation). Within the transition interval, dui/ds − τec[d2ui/ds2 +
ui(duj/ds)(duj/ds)] + O(a)/m − F i

ext/(mc2) has to equal some un-
known function of time that can simply be denoted by f i

a/(mc2).
A formal solution to (8.45) with the O(a)/m terms neglected can be ob-

tained for u̇(t) by replacing Fext in (8.21) with (Fext + fa) to get

u̇(t)=
1

mτeγ3(t)

∞∫
t

γ(t′)
{
Fext(t′) + fa(t′) (8.46a)

− [(Fext(t′) + fa(t′)) · u(t′)]u(t′)/c2
}

exp
[

− (1/τe)
∫ t′

t

γ−1(t′′)dt′′
]
dt′

or, equivalently, with the change of integration variables dt′/γ = dτ ′ and
dt′′/γ = dτ ′′

u̇(τ)=
1

mτeγ3(τ)

∞∫
τ

γ2(τ ′)
{
Fext(τ ′) + fa(τ ′) (8.46b)

− [(Fext(τ ′) + fa(τ ′)) · u(τ ′)]u(τ ′)/c2
}

exp[−(τ ′ − τ)/τe]dτ ′

which has to be zero for t < 0 under the assumption that the exact classical
solution is causal and the externally applied force Fext is zero for t < 0. As is
customarily done with u and Fext, the same symbol is used for fa in (8.42)–
(8.46) independently of its inertial reference frame or its dependent variable
s, t, or τ .



8.2 Cause and Elimination of the Pre-Acceleration 83

The necessity of a transition force fa(t), which contributes only during the
short time it takes light to travel across the charged sphere, can be understood
physically by considering two differential elements of charge at either end
of the charge distribution. These two elements are at rest separated by a
distance 2a. When the external force is first applied, each of these charge
elements accelerates and radiates. However, each element of charge does not
experience the radiation from the other until approximately the time it takes
light to travel between them . Thus, there will be a time delay in the radiation
reaction force of about 2a/c between these two elements of charge separated
by 2a (assuming here that the velocity of the charge does not change by an
appreciable fraction of c during this time interval). For the other combinations
of charge elements separated by a distance less than 2a, the time delay of
the radiation will be proportionately less. The double integration over the
entire sphere of charge elements de and de′ produces a continuous addition of
radiation forces with time delays varying from zero to about 2a/c. Moreover,
the trailing end of the charge first experiences the change in field from the
leading end a short time before the leading end of the charge first experiences
the change in field from the trailing end. In all, the transition force fa(t)
appears between the time the external force is first applied and the time
Δta ≈ 2a/c after which the self electromagnetic force can be expressed entirely
in terms of the present velocity and its time derivatives. The functional time
dependence of this transition force must also account for the addition of the
bare mass in order to maintain causality in the solution to the equation of
motion.

The transition force fa(t) in the equation of motion allows solutions to the
equation of motion that satisfy initial conditions on velocity and that are free
of pre-acceleration. Although the exact dependence on time of the function
fa(t) is unknown, it vanishes outside the interval in (8.30), that is

fa(t) = 0 , t 
∈ [0, Δta]. (8.47)

The requirement that the function fa(t) eliminates the pre-acceleration further
restricts the time dependence of fa(t). The necessary and sufficient condition
for there to be no pre-acceleration can be expressed formally by demanding
that u̇(t) = 0 for t < 0 in the solution (8.46) to obtain from (8.46b)

Δta∫
0

γ2(τ ′)
{
fa(τ ′) − [fa(τ ′) · u(τ ′)]u(τ ′)

}
e−τ ′/τedτ ′

= −
∞∫
0

γ2(τ ′)
{
Fext(τ ′) − [Fext(τ ′) · u(τ ′)]u(τ ′)

}
e−τ ′/τedτ ′. (8.48)

The important feature of (8.48) that allows this condition to be satisfied is
that the τ dependence (eτ/τe) has canceled to leave the left- and right-hand
sides of (8.48) independent of τ (and thus independent of t). Moreover, if



84 8 Solutions to the Equation of Motion

u(τ) and Fext(τ) are expandable in a power series for τ > 0, the function
γ2(τ ′){Fext(τ ′) − [Fext(τ ′) · u(τ ′)]u(τ ′)} in the integrand on the right-hand
side of (8.48) can be expanded in a power series about τ ′ = 0+. Term by
term integration of this power series then shows that the right-hand side of
(8.48) can be expressed solely in terms of the values of the external force
and velocity and their time derivatives at τ ′ = 0+. This re-expression of the
right-hand side of (8.48) is philosophically appealing because it removes the
apparent dependence of the right-hand side of (8.48) on values of the external
force later than τ ′ = 0+ (t = 0+) and thus later than τ ′ = Δta after which
time fa(τ ′) is zero.

To determine a more explicit form of the condition in (8.48) that applies
to rectilinear motion, rewrite (8.43) for rectilinear motion in the form of (8.6)
by means of the change of variables defined at the beginning of Chapter 8 to
get

Fext(τ) + fa(τ)
m

= V ′(τ) − τeV ′′(τ) +
O(a)
m

. (8.49)

As usual, Fext(τ), and now fa(τ), are compact notations for Fext[t(τ)] and
fa[t(τ)], and it is assumed that τ = 0 when t = 0. As in (8.13) and (8.16), the
solution to (8.49) for all τ under the asymptotic condition in (8.12) and with
the O(a)/m terms neglected is given by

V ′(τ) =
1

mτe

∞∫
τ

[Fext(τ ′) + fa(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′ (8.50a)

V(τ) =
1
m

∞∫
τ

[Fext(τ ′) + fa(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′

+
1
m

τ∫
0

[Fext(τ ′) + fa(τ ′)]dτ ′

= τeV ′(τ) +
1
m

τ∫
0

[Fext(τ ′) + fa(τ ′)]dτ ′ (8.50b)

where in (8.50b) it is assumed that the velocity is zero before the external
force is applied. Since Fext(τ) and velocity are zero for τ < 0, the velocity and
acceleration functions must be zero for τ < 0. Thus, (8.50) imply

∞∫
0

[Fext(τ ′) + fa(τ ′)]e−τ ′/τedτ ′ = 0 (8.51a)

or
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Δta∫
0

fa(τ ′)e−τ ′/τedτ ′ = −
∞∫
0

Fext(τ ′)e−τ ′/τedτ ′ (8.51b)

a result that can also be gotten directly from (8.48) by noting that the inte-
grands in (8.48) contain the factor (1 − u2/c2) = 1/γ2 for rectilinear motion.
The integrals of fa(τ) have the finite limits given in (8.48) and (8.51b) because
fa(τ) is zero outside the interval 0 ≤ τ ≤ Δta.

If there are more than one nonanalytic point in the otherwise analytic
external force function Fext(τ), for example, at τ = τ1 = 0 and at τ = τ2,
rewrite Fext(τ) as

Fext(τ) = F1(τ) + h(τ − τ2)[Fext(τ) − F1(τ)] (8.52)

in which h(τ) is the unit step function defined in (8.33). The function F1(τ)
is defined as follows: F1(τ) = Fext(τ) for τ < τ2 (Fext(τ) = 0, τ < 0) and, in
addition, F1(τ) is the analytic continuation in the complex τ plane about the
real τ axis of Fext(τ) from τ < τ2 to τ ≥ τ2. Thus, F1(τ) is an analytic function
of complex τ about the real τ axis for τ > τ1 = 0. Moreover, the function
in the square bracket, Fext(τ) − F1(τ), is an analytic function of complex τ
about the real τ axis for all τ > τ2.

There will now be two transition functions, that is, fa(τ) = fa1(τ)+fa2(τ),
where the first, fa1(τ), is nonzero only in the interval [0, Δta] and the second,
fa2(τ), is nonzero only in the interval [τ2, τ2 + Δta]. Then the solutions for
V ′(τ) and V(τ) in (8.50) become

V ′(τ) =
1

mτe

∞∫
τ

[F1(τ ′) + fa1(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′ (8.53a)

+
1

mτe

∞∫
τ

h(τ ′ − τ2)[Fext(τ ′) − F1(τ ′) + fa2(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′

V(τ) = τeV ′(τ) +
1
m

τ∫
0

[Fext(τ ′) + fa(τ ′)]dτ ′ , V(0) = 0 . (8.53b)

For there to be no pre-acceleration before τ = τ1 = 0 and no pre-acceleration
(or pre-deceleration) before τ = τ2, the transition functions fa1(τ) and fa2(τ)
must satisfy

∞∫
0

[F1(τ ′) + fa1(τ ′)]e−τ ′/τedτ ′ = 0 (8.54a)

and ∞∫
τ2

[Fext(τ ′) − F1(τ ′) + fa2(τ ′)]e−τ ′/τedτ ′ = 0 (8.54b)
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or, equivalently

Δta∫
0

fa1(τ)e−τ/τedτ = −
∞∫
0

F1(τ)e−τ/τedτ (8.55a)

and

Δta∫
0

fa2(τ + τ2)e−τ/τedτ = −
∞∫
0

[Fext(τ + τ2) − F1(τ + τ2)]e−τ/τedτ. (8.55b)

With the help of (8.54) or (8.55), the solution for V ′(τ) in (8.53a) can be
written for τ outside the transition intervals as

V ′(τ) =
1

mτe

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , τ < 0
∞∫
τ

F1(τ ′) exp[−(τ ′ − τ)/τe]dτ ′ , Δta < τ < τ2

∞∫
τ

Fext(τ ′) exp[−(τ ′ − τ)/τe]dτ ′ , τ2 + Δta < τ .

(8.56)

For N nonanalytic points in time τn of the otherwise analytic external
force function Fext(τ), the first occurring at τ = τ1 = 0 when the exter-
nally applied force is first applied to the charged sphere, there are transi-
tion functions fan(τ) nonzero only in the interval [τn, τn + Δta] such that
fa(τ) =

∑N
n=1 fan(τ). The external force can be expressed in terms of N

functions [F1(τ), F2(τ), · · · , FN (τ)] such that Fn(τ) is the analytic continu-
ation of Fext(τ) about the real τ axis from τn < τ < τn+1 to τ ≥ τn+1
for n = 1, 2, · · · , N − 1, with FN (τ) = Fext(τ) for τN < τ < ∞, and
F1(τ) = Fext(τ) = 0 for τ < 0:

Fext(τ) = F1(τ) + h(τ − τ2)[F2(τ) − F1(τ)] + · · ·
+ h(τ − τN )[FN (τ) − FN−1(τ)]. (8.57)

Therefore, F1(τ) is an analytic function of complex τ about the real τ axis for
τ > τ1 = 0, and each of the functions in the square brackets, Fn+1(τ)−Fn(τ),
n = 1, 2, · · · , N −1, is an analytic function of complex τ about the real τ axis
for τ > τn.

The acceleration function V ′(τ) satisfies the differential equation

1
m

[
Fext(τ) +

N∑
n=1

fan(τ)

]
= V ′(τ) − τeV ′′(τ) +

O(a)
m

(8.58)

which has the exact solution (neglecting the O(a)/m terms) given by
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V ′(τ) =
1

mτe

∞∫
τ

[F1(τ ′) + fa1(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′ (8.59a)

+
1

mτe

∞∫
τ

h(τ ′ − τ2)[F2(τ ′) − F1(τ ′) + fa2(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′

...

+
1

mτe

∞∫
τ

h(τ ′ − τN )[FN (τ ′) − FN−1(τ ′) + faN (τ ′)] exp[−(τ ′ − τ)/τe]dτ ′

and

V(τ) = τeV ′(τ) +
1
m

τ∫
0

[
Fext(τ ′) +

N∑
n=1

fan(τ ′)

]
dτ ′ , V(0) = 0 (8.59b)

with the transition functions fan(τ) eliminating all pre-acceleration and pre-
deceleration by satisfying the conditions

Δta∫
0

fan(τ + τn)e−τ/τedτ = −
∞∫
0

[Fn(τ + τn)−Fn−1(τ + τn)]e−τ/τedτ ,

n = 1, 2, · · · , N (8.60)

with τ1 = 0 and F0(τ) ≡ 0. The conditions (8.60) on the transition functions
fan(τ) allow V ′(τ) in (8.59a) to be expressed outside the transition intervals
[τn, τn + Δta] as simply

V ′(τ) =
1

mτe

⎧⎨
⎩

0 , τ < τ1 = 0
∞∫
τ

Fn(τ ′) exp[−(τ ′ − τ)/τe]dτ ′ , τn + Δta < τ < τn+1 ,

n = 1, 2, · · · , N (8.61)

where τN+1 = ∞. This result says that the acceleration function V ′(τ) is
determined at a time τ outside the transition intervals by the values of the
externally applied force at the time τ and its analytic continuation to τ = ∞.
In each domain τn + Δta < τ < τn+1, the acceleration function V ′(τ) is the
particular solution to the differential equation of motion

Fn(τ)
m

= V ′(τ) − τeV ′′(τ) , τn < τ < ∞ (8.62)

that converges as τ → ∞.
The transition functions fan(τ), which are nonzero only in the transition

intervals [τn, τn + Δta], may contain delta functions and their derivatives as
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Δta → 0. That is, even as a → 0, the acceleration function V ′(τ) may produce
a finite jump in the velocity function V(τ) across the transition intervals. Since
V ′(τ) in (8.61) is not given for τ in the transition intervals, (8.61) cannot
be used to determine these possible jumps in velocity across the transition
intervals. The differential equation for V ′(τ) valid for all τ is given by (8.58).
Its solution for V ′(τ) and V(τ) given in (8.59) can also be expressed as

V ′(τ) =
N∑

n=1

V ′
n(τ) (8.63a)

V(τ) =
N∑

n=1

Vn(τ) , Vn(τn) = 0 (8.63b)

where

V ′
n(τ) =

1
mτe

∞∫
τ

h(τ ′ − τn)[Fn(τ ′) − Fn−1(τ ′) + fan(τ ′)] exp[−(τ ′ − τ)/τe]dτ ′

(8.63c)
and

Vn(τ) = τeV ′
n(τ) +

1
m

τ∫
τn

h(τ ′ − τn)[Fn(τ ′) − Fn−1(τ ′) + fan(τ ′)]dτ ′ (8.63d)

for all τ , so that V ′
n(τ) satisfies

h(τ −τn)[Fn(τ)−Fn−1(τ)+fan(τ)]/m = V ′
n(τ) − τeV ′′

n(τ), −∞ < τ < ∞
(8.63e)

with Vn(τn) = 0. The jumps in the acceleration functions across the nth
transition interval [τn, τn +Δta] are independent of fan(τ), whereas the jumps
in the velocity functions are determined by fan(τ). These jumps are given
by ΔV ′ = ΔV ′

n and ΔV = ΔVn. Note, however, that, in general, V ′(τn) 
=
V ′

n(τn) = 0, V(τn) 
= Vn(τn) = 0, V ′(τn + Δta) 
= V ′
n(τn + Δta) = ΔV ′

n, and
V(τn + Δta) 
= Vn(τn + Δta) = ΔVn.

The modified equation of motion (8.43) or (8.45), and its rectilinear version
(8.58), still admit a homogenous runaway solution. However, this runaway
solution is eliminated from the modified equation of motion by the asymptotic
condition in (8.12) without introducing noncausal motion into the solution.

Although the solution to the modified equation of motion (8.45) is free of
pre-acceleration, it may be bothersome that for τ > τn + Δta the solution in
(8.61) to the modified (and original) equation of motion depends on the values
of the external force at all future times. This result becomes understandable if
it is remembered that (8.61) is the solution to an equation of motion obtained
under the restriction that the externally applied force function Fn(τ) be an
analytic function of time about the real τ axis for all τ > τn, because the
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values of an analytic function on an interval of a singly connected domain of
analyticity determine uniquely the function over the rest of the domain. For
example, assume that for τ > τn the external force Fn(τ ′) in (8.61) can be
expanded in a power series about τ to recast (8.61) in the form

V ′(τ) =
1
m

∞∑
k=0

(τe)k dkFn(τ)
dτk

, τn + Δta < τ < τn+1 (8.64)

which simply states that the acceleration at any one time (τn + Δta < τ <
τn+1) depends on the time derivatives of the applied force as well as the applied
force itself at that time. (Note that (8.64) is not a valid representation for V ′(τ)
in the transition interval τn < τ < τn + Δta containing the transition force in
addition to the externally applied force.)

If the restriction that the external force Fn(τ) be an analytic function of
τ for all τ > τn is ignored, and Fn(τ) is allowed to attain a strong enough
infinite singularity at some future point in time, as in the case of the charged
sphere being attracted to the center of a Coulomb field (1/r2 singularity), the
integration in (8.61) may not converge for all values of τ before the sphere
reaches the singularity [50].

8.2.3 Determination of the Transition Force for
Rectilinear Motion

Although the exact variation with τ of each fan(τ) is unknown, they can be
represented operationally from equations (8.63) in terms of delta functions as
the radius a of the charge approaches zero so that Δta → 0 and the mass
m is renormalized to a prescribed value. From (8.63c)–(8.63d) we see that
Vn(τ) = 0 for τ < τn and it is a differentiable function of τ for τ > τn + Δta,
that is, for τ ≥ τ+

n as Δta → 0, where τ+
n indicates a value infinitesimally

larger than τn. Thus, we can represent Vn(τ) for all τ as

Vn(τ) = h(τ − τ+
n )V+

n (τ) (8.65)

with h(τ) denoting the unit step function and the V+
n (τ) on the right-hand

side of this equation is a differentiable function of τ equal to Vn(τ) for τ ≥ τ+
n .

Differentiating this equation produces

V ′
n(τ) = δ(τ − τ+

n )V+
n (τ) + h(τ − τ+

n )V+′
n (τ) (8.66a)

V ′′
n(τ) = δ′(τ − τ+

n )V+
n (τ) + 2δ(τ − τ+

n )V+′
n (τ) + h(τ − τ+

n )V+′′
n (τ) (8.66b)

where δ(τ) is the Dirac delta function. Combining V ′
n and V ′′

n , we have

V ′
n − τeV ′′

n = δ(τ − τ+
n )[Vn(τ+

n ) − τeV ′
n(τ+

n )] − τeδ
′(τ − τ+

n )Vn(τ+
n )

+ h(τ − τ+
n )[Fn(τ) − Fn−1(τ)]/m (8.67)
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in which we have used the equation of motion (8.63e) in the domain τ ≥ τ+
n ,

namely, [Fn(τ)−Fn−1(τ)]/m = V ′
n(τ) − τeV ′′

n(τ), as well as the operational
relationships δ(τ − τ+

n )V+
n (τ) = δ(τ − τ+

n )Vn(τ+
n ) and δ′(τ − τ+

n )V+
n (τ) =

δ′(τ − τ+
n )Vn(τ+

n ) − δ(τ − τ+
n )V ′

n(τ+
n ).

Comparing (8.67) with the equation of motion (8.63e) shows that the
transition force can be expressed as

fan(τ)
m

= [ΔVn − τeΔV ′
n] δ(τ − τ+

n ) − τeΔVn δ′(τ − τ+
n ) (8.68)

where ΔVn has replaced Vn(τ+
n ), and ΔV ′

n has replaced V ′
n(τ+

n ). Since fan(τ)
alone determines ΔVn, we are free to decide the value of ΔVn in (8.68). How-
ever, ΔV ′

n is determined solely by the externally applied force and is inde-
pendent of fan(τ). Thus, it is a parameter whose value cannot be changed in
(8.68). Choosing ΔVn = 0 leaves only the delta function in (8.68) and makes
the velocity function continuous. Choosing ΔVn = τeΔV ′

n leaves only the dou-
blet function in (8.68) and produces a jump in velocity approximately equal
to the change in velocity produced by the original pre-acceleration or in the
original equation of motion (see Sections 8.2.4 and 8.2.5).

We can verify that the transition functions in (8.68) remove the pre-
acceleration (or pre-deceleration) by confirming that they satisfy the con-
ditions in (8.60). From (8.68) we see that

Δta∫
0

fan(τ + τn)e−τ/τedτ = −mτeΔV ′
n (8.69)

and from (8.63c)

V ′
n(τ+

n ) = ΔV ′
n =

1
mτe

∞∫
τ+

n

[Fn(τ ′) − Fn−1(τ ′)] exp[−(τ ′ − τ+
n )/τe]dτ ′

=
1

mτe

∞∫
0

[Fn(τ + τn) − Fn−1(τ + τn)]e−τ/τedτ (8.70)

so that the conditions in (8.60) are satisfied and the pre-acceleration (or pre-
deceleration) is eliminated.

Inserting fan(τ) from (8.68) into (8.63c) and (8.63d), we can write as a → 0

V ′
n(τ) = h(τ − τn)

1
mτe

∞∫
0

[Fn(τ ′ + τ) − Fn−1(τ ′ + τ)]e−τ ′/τedτ ′ (8.71a)

Vn(τ) = τeV ′
n(τ) + h(τ − τn)

(
ΔVn − τeΔV ′

n +
1
m

τ∫
τn

[Fn(τ ′) − Fn−1(τ ′)]dτ ′
)

(8.71b)
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which when summed in (8.63a) and (8.63b) yield

V ′(τ) =
1

mτe

⎧⎨
⎩

0 , τ < τ1 = 0
∞∫
0

Fn(τ ′ + τ)e−τ ′/τedτ ′ , τ+
n < τ < τn+1 ,

n = 1, 2, · · · , N (8.72a)

V(τ) = τeV ′(τ) +
N∑

n=1

h(τ − τn)(ΔVn − τeΔV ′
n) +

1
m

τ∫
0

Fext(τ ′)dτ ′ (8.72b)

or by substituting ΔV ′
n from (8.70) and V ′

n(τ) from (8.71a) into (8.63a)

V(τ)=
N∑

n=1

h(τ − τn)
(

ΔVn +
1
m

∞∫
0

[Fn(τ ′ + τ) − Fn(τ ′ + τn) (8.72c)

−Fn−1(τ ′ + τ) + Fn−1(τ ′ + τn)]e−τ ′/τedτ ′
)

+
1
m

τ∫
0

Fext(τ ′)dτ ′

expressions that are free of pre-acceleration and pre-deceleration.
The equations in (8.71) and (8.72) satisfy the jump conditions

ΔV ′
n = V ′(τ+

n )−V ′(τn) =
1

mτe

∞∫
0

[Fn(τ +τn)−Fn−1(τ +τn)]e−τ/τedτ (8.73a)

ΔVn = V(τ+
n ) − V(τn) . (8.73b)

Although the jumps in the acceleration function are determined by the inte-
grations of the externally applied force in (8.73a), the jumps in the velocity
function in (8.73b) remain undetermined. The drawback of the corrected equa-
tion of motion, as discussed in Section 8.2.2, is that the exact time dependences
of the transition functions fan(τ) required by causality at each nonanalytic
point in time τn of Fext(τ) cannot be determined before the velocity of the
charge is known. We have, however, been able to reduce this ambiguity in the
fan(τ) to the jumps ΔVn in the velocity function across the transition inter-
vals. In Section 8.2.5, it is shown that reasonable values for the ΔVn can be
chosen to conserve momentum and energy while maintaining a non-negative
value for the energy radiated during the transition intervals.

8.2.4 Motion of Charge in a Uniform Electric Field
for a Finite Time

Assume a uniform electrostatic field E0 is applied to a charge e with mass
m initially at rest at t1 = τ1 = 0 and that the electric field is turned off at
time t = t2 (τ = τ2). For example, the charge could be accelerated between
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two infinitesimally thin plates of a parallel-plate capacitor charged to produce
the electric field E0. It could be released at time t = 0 from one plate of the
capacitor and leave through a small hole in the second plate at time t = t2.
With the O(a)/m terms neglected, the acceleration and velocity as a function
of time can be found for the original equation of motion from (8.13a) and
(8.16) (or from (8.59) without the transition forces) as

V ′
pre(τ) =

eE0

m

⎧⎪⎪⎨
⎪⎪⎩

(
1 − e−τ2/τe

)
eτ/τe , τ ≤ 0(

1 − e(τ−τ2)/τe
)

, 0 ≤ τ ≤ τ2

0 , τ2 ≤ τ

(8.74a)

Vpre(τ) =
eE0

m

⎧⎪⎪⎨
⎪⎪⎩

τe

(
1 − e−τ2/τe

)
eτ/τe , τ ≤ 0

τe

(
1 − e(τ−τ2)/τe

)
+ τ , 0 ≤ τ ≤ τ2

τ2 , τ2 ≤ τ

(8.74b)

where the subscripts “pre” indicate the solution to the original equation of mo-
tion that exhibits pre-acceleration and pre-deceleration. Note that the change
in the velocity function due to the pre-acceleration before τ = 0 and the pre-
deceleration before τ = τ2 is approximately equal to eE0τe/m for τ2 � τe.
Also, the pre-acceleration involves τ2 and thus anticipates when the externally
applied force turns off (at τ = τ2) as well as when it is first applied (at τ = 0).

The solution to the modified equation of motion that is free of noncausal
pre-acceleration and pre-deceleration can be found by evaluating (8.72) for
N = 2 to get (as a → 0 with renormalized mass m)

V ′(τ) =
eE0

m

⎧⎪⎪⎨
⎪⎪⎩

0 , τ < 0

1 , 0+ < τ < τ2

0 , τ+
2 < τ

(8.75a)

V(τ) =

⎧⎪⎪⎨
⎪⎪⎩

0 , τ < 0

ΔV1 + eE0τ/m , 0+ < τ < τ2

ΔV21 + eE0τ2/m , τ+
2 < τ

(8.75b)

with ΔV21 = ΔV2 +ΔV1. Except for the homogeneous exponential (runaway)
solution in (8.74) and the discontinuities across the transition intervals at
τ = 0 and τ = τ2 in (8.75), the solutions in both (8.74) and (8.75) are
identical to the solution one obtains by solving the equation of motion without
the radiation reaction terms, that is, by solving the relativistic version of
Newton’s second law of motion. This behavior, which depends uniquely on
the external force being constant while it is applied, was discussed in Section
7.1 on hyperbolic (relativistically uniform) motion.

We can make use of this behavior of the motion of a charge in a parallel-
plate capacitor to solve the rectilinear version of (8.45) with the O(a)/m terms
neglected
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Fext(t)+fa1(t)+fa2(t)
m

=
d(γu)

dt
− τe

{
d
dt

[
γ

d
dt

(γu)
]
− γ6

c2 (u̇)2u
}

(8.76a)

[Fext(t) + fa1(t) + fa2(t)]u
mc2 =

dγ

dt
− τe

[
d
dt

(
γ

dγ

dt

)
− γ6

c2 (u̇)2
]

(8.76b)

for γ(t)u(t) (and thus u(t) and u̇(t)) outside the transition regions where only
the first term (relativistic Newtonian acceleration) remains. Alternatively, the
substitutions at the beginning of this chapter can be used to find γ(t)u(t)
from V(τ) given in (8.75b). Either method yields for γu with Fext(t) = eE0
(as a → 0 with renormalized mass m)

d(γu)
dt

= γ3(t)u̇(t) =
eE0

m

⎧⎪⎪⎨
⎪⎪⎩

0 , t < 0

1 , 0+ < t < t2

0 , t+2 < t

(8.77a)

γ(t)u(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 , t < 0

Δ(γu)1 + eE0t/m , 0+ < t < t2

Δ(γu)21 + eE0t2/m , t+2 < t

(8.77b)

with
γ(t) =

{
1 + [γ(t)u(t)/c]2

}1/2
(8.77c)

and Δ(γu)21 = Δ(γu)2 + Δ(γu)1 , where Δ(γu)1 and Δ(γu)2 are the jumps
in γ(t)u(t) across the transition intervals at t = 0 and t = t2. (If desired,
these jumps can be expressed in terms of ΔV1 and ΔV2; see (8.79) and (8.82)
below.)

One sees from this example of the motion of a charge through a parallel-
plate capacitor that the transition forces fan(t), which are nonzero only during
the short time intervals following the points in time where the externally
applied force is discontinuous, remove both the noncausal pre-acceleration
and pre-deceleration from the solution to the equation of motion. However,
the transition forces fan(t) in the equation of motion change, in general, the
momentum and energy of the charged sphere. The next section determines
conditions under which this change in momentum-energy is consistent with
the conservation of momentum-energy and a non-negative radiated energy
during the transition intervals.

8.2.5 Conservation of Momentum-Energy in the
Causal Equation of Motion

The transition forces fa(t) =
∑N

n=1 fan(t) ensure that the solution to the
modified equation of motion in (8.45) obeys causality while remaining free
of runaway motion. However, these transition forces, in general, add to the
momentum and energy of the charged particle. In particular, if the modified
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power equation of motion (8.45b) with the O(a)/m terms neglected, or its
rectilinear version in (8.76b), is integrated over time from before the external
force is first applied to a γΔta after the external force is turned off, the total
work done by the external force should equal the total change in kinetic energy
of the particle plus the total energy radiated by the charged particle. Since the
total change in the reversible reactive Schott acceleration energy is zero and
the change in kinetic energy is given by the change in γ, we have to assume
that the remaining energy change across all the transition intervals (call it
WTI) equals the energy radiated during all the transition intervals, an energy
that must be equal to or greater than zero. Before the external force turns off,
the transition forces may contribute to reversible reactive acceleration energy
as well as radiated energy and thus the remaining energy change across any
one transition interval (call it WTI,n) need not be equal to or greater than
zero. Nonetheless, we shall first determine the conditions under which this
energy change WTI,n across a single transition interval is equal to or greater
than zero.

We see from (8.76b) that WTI,n across the nth transition interval from
t = tn to t = tn + γΔta = t+n as Δta → 0 is given by

WTI,n

mc2 =
1

mc2

t+n∫
tn

[
mτeγ

6(u̇)2 − fanu
]
dt =τe[γ(t+n )γ̇(t+n ) − γ(tn)γ̇(tn)]

−[γ(t+n ) − γ(tn)] . (8.78)

The integral of the external force does not appear in the second equality of
(8.78) because the work done by the finite external force during the transition
interval approaches zero as Δta → 0. Since the acceleration of the extended
charge can contain delta functions in the transition intervals as a → 0, the
radiation from the extended charge during the transition intervals is no longer
given by just the integration of mτeγ

6(u̇)2 but must include the integrations
of fanu as well.7 The right-hand side of the second equality in (8.78) contains

7 One may object to the presence of the fanu in the radiation integral of (8.78)
on the grounds that Maxwell’s equations predict that the energy radiated by an
accelerating point charge is given without this term [13], that is, by the mτeγ

6(u̇)2

term alone. However, as (8.32) shows, this derivation from Maxwell’s equations
does not hold for an extended charge during the short time that it takes light to
travel across the charge distribution, even as the radius of the charge approaches
zero, because the velocity may become discontinuous as a → 0. (Abraham [3, sec.
25] and Hertz [44] were well aware that the energy radiated during a jump in
velocity of an extended model of the electron was not given by the integral of the
mτeγ

6(u̇)2 term in (8.78).) Even if the change in velocity across the transition
interval is negligible, the textbook derivation and expression for the radiated
energy from an accelerated point charge can become invalid for an extended
charge distribution. To see this, consider a charge e with an acceleration given
by

√
δα(t), where the pulse width α of the finite-size delta function δα(t) is
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the change in Schott acceleration energy minus the change in kinetic energy
across the transition interval. Evaluating the right-hand side of (8.78) in terms
of the proper time τ and velocity function V gives

WTI,n

mc2 =
τe

c
{V ′(τ+

n )sinh[V(τn)/c + ΔVn/c] − V ′(τn) sinh[V(τn)/c]}

− cosh[V(τn)/c + ΔVn/c] + cosh[V(τn)/c] (8.79)

where ΔVn is the jump in V across the transition interval. The values of V ′(τn)
and V ′(τ+

n ) are determined solely by the externally applied force, whereas the
jump ΔVn in the velocity function is determined solely by the transition force
fan(τ). The velocity function V(τn) at the beginning of the transition interval
can have any value from −∞ to +∞.

Numerical evaluation of (8.79) reveals that for a value of the velocity
function |V(τn)/c| � 3 at the beginning of the transition interval, a ΔVn/c
across the transition interval can be found to make WTI,n ≥ 0 for all values of
V ′(τ+

n ) if the value of acceleration at the beginning of the transition interval is
restricted to |τeV ′(τn)/c| � .9. As the value of |V(τn)/c| becomes smaller than
3, the value of |τeV ′(τn)/c| must become smaller than .9 to keep WTI,n ≥ 0
for all values of V ′(τ+

n ). And if |V(τn)/c| � 1, then |τeV ′(τn)/c| must be
� |V(τn)/c|/2; that is, if |V(τn)/c| � 1 then |τeV ′(τn)/c| � 1 to find a ΔVn/c
that makes WTI,n ≥ 0 for all values of V ′(τ+

n ). Therefore, for N transition
intervals between the time the external force is first applied to when it is shut
off, the total change in energy WTI =

∑N
n=1 WTI,n , which equals the total

energy radiated during the transition intervals and thus must be ≥ 0, can
indeed be made ≥ 0 by choosing appropriate values for the jumps ΔVn across
the transition intervals if the acceleration is restricted to values

|V ′(τ)| τe

c
� 1 , τ /∈ transition intervals . (8.80)

It is easily proven, for example, from (8.61), that this inequality is satisfied if

|Fext|τe

mc
� 1. (8.81)

greater than zero. The textbook expression for the total energy radiated by a
point charge predicts a radiated energy proportional to e2 ∫

δα(t)dt = e2. Now,
distribute the charge e uniformly over the surface of a sphere of radius a. Each
element de of this charge distribution will radiate a pulse with the pulse width
α of the function

√
δα(t). Therefore, for α � a/c, the change in velocity across

the transition interval is negligible, yet the fields radiated by different elements
of the extended charge distribution will hardly interfere, and the total radiated
energy is approximately equal to the integrated sum of the energy radiated by
each element (which is proportional to (de)2), so that the total energy radiated
by the extended charge is proportional to

∫
(de)2 → 0 �= e2. Moreover, the value

of the total energy radiated by the extended charge of radius a can vary between
0 and the textbook value for a point charge as the pulse width α of δα(t) varies
from α � a/c to α � a/c.
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In the proper frame of the moving charged insulator, the inequality in
(8.80) is identical to the condition in (8.24c) sufficient to neglect the O(a)/m
terms in the proper-frame equation of motion because τe = 4a/(3c). Unfortu-
nately, however, even if a is allowed to approach zero while renormalizing the
mass m to a finite value (so that the conditions in (8.24) are all satisfied yet
τe remains finite and equal to e2/(6πε0mc3)), the condition in (8.80) is still
required to keep the energy radiated during the transition intervals equal to
or greater than zero; see Section 8.5. Nonetheless, to within the approxima-
tion that the unrenormalized equation of motion in (8.76) and its solution are
valid, WTI can always be made equal to or greater than zero by choosing the
appropriate jumps in velocity across the transition intervals. Also, it can be
shown that WTI is a small fraction of the total energy radiated if the amount
of time that the external force is applied is several times greater than τe. Thus,
there appears to be no inconsistency in assuming that WTI represents the en-
ergy radiated during all the transition intervals and that the unrenormalized
causal equation of motion modified by the transition functions fan does not
violate conservation of momentum-energy.

For the example of the parallel-plate capacitor problem discussed in the
previous section, we have for the total energy radiated across the two transi-
tion intervals

WTI

mc2 =
1

mc2

γΔta=0+∫
0

[
mτeγ

6(u̇)2 − fa1u
]
dt +

1
mc2

t2+γΔta=t+2∫
t2

[
mτeγ

6(u̇)2 − fa2u
]
dt

= cosh
(

eE0τ2

mc
+

ΔV1

c

)
− cosh

(
ΔV1

c

)

−
[
cosh

(
eE0τ2

mc
+

ΔV1

c
+

ΔV2

c

)
− 1
]

−eE0τe

mc

[
sinh

(
eE0τ2

mc
+

ΔV1

c

)
− sinh

(
ΔV1

c

)]
(8.82)

where the values of V ′(τ) and V(τ) have been taken from (8.75). The first line
after the last equality sign in (8.82) gives the total work done on the charged
particle by the external force. The second line after the last equality sign
subtracts the total change in the kinetic energy of the charged particle. The
third line after the last equality sign in (8.82) subtracts the energy radiated
by the charged particle while it is outside the transition intervals.

Using values of ΔV1 and ΔV2 given by

ΔV1/c = −ΔV2/c = −C0 sign(eE0) ln[1 − |eE0τe/(mc)|] (8.83)

with the constant C0 > 1, the right-hand side of (8.82) is equal to or greater
than zero for all values of the time τ2 that the constant external force eE0 is
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applied to the charged sphere, provided |eE0τe/(mc)| < 1; that is8

WTI ≥ 0 if
∣∣∣∣eE0τe

mc

∣∣∣∣ < 1 . (8.84)

Moreover, (8.84) continues to hold if the initial value of the velocity is changed
from zero to an arbitrary value. (If instead of the choice in (8.83), one chooses
ΔV1/c = −ΔV2/c = eE0τe/(mc), then WTI ≥ 0 if |eE0τe/(mc)| � 1, an
inequality that conforms to the general criterion in (8.81) for ensuring that
WTI ≥ 0.)

Lastly, we determine the total momentum (GTI) radiated by the charged
particle across the two transition intervals by evaluating the difference between
the total impulse imparted by the external force and the sum of the total
change in kinetic momentum of the particle and the momentum it radiates
outside the transition intervals. From (8.76a) one finds that for two transition
intervals, GTI =

∑n=2
n=1 GTI,n , where

GTI,n

mc
=

1
mc

t+n∫
tn

[
mτeγ

6(u̇)2u/c2 − fan

]
dt

=
τe

c

{
γ(t+n )

d
dt

[γ(t+n )u(t+n )] − γ(tn)
d
dt

[γ(tn)u(tn)]
}

− 1
c
[γ(t+n )u(t+n ) − γ(tn)u(tn)] (8.85)

which gives for the parallel-plate capacitor problem

GTI

mc
= sinh

(
eE0τ2

mc
+

ΔV1

c

)
− sinh

(
ΔV1

c

)

− sinh
(

eE0τ2

mc
+

ΔV1

c
+

ΔV2

c

)

−eE0τe

mc

[
cosh

(
eE0τ2

mc
+

ΔV1

c

)
− cosh

(
ΔV1

c

)]
. (8.86)

8 If |eE0τe/(mc)| > 1 and ΔV1 has a finite value independent of τ2, no values of
ΔV1 and ΔV2 keep WTI ≥ 0 for all τ2. If ΔV1 is allowed to depend on τ2, then
ΔV1 and ΔV2 can be chosen to keep WTI ≥ 0 for |eE0τe/(mc)| > 1. This would
violate causality, however, because the value ΔV1 for the jump in velocity when
the external force is first applied would have to anticipate the value of the time
τ2 at which the force would be turned off. Another way to avoid the restriction in
(8.84) on the magnitude of the external force is to allow the energy change WTI

during a transition interval to become negative if the external force is large enough
to not satisfy the second inequality in (8.84); for example, by postulating that
the charged particle absorbs the energy that it radiated during a short time just
prior to the transition interval. The physical mechanism for this re-absorption of
radiated energy would remain unexplained, however, within the realm of classical
physics.
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The first line after the equality sign in (8.86) is the total impulse imparted to
the charged particle by the external force. The second line after the equality
sign subtracts the total change in the kinetic momentum of the charged par-
ticle. The third line after the equality sign in (8.86) subtracts the momentum
radiated by the charged particle while it is outside the transition intervals.

For a physically realizable radiated momentum-energy, the absolute value
of the radiated momentum multiplied by the speed of light c must be less than
or equal to the radiated energy, that is∣∣∣∣GTI

mc

∣∣∣∣ ≤ WTI

mc2 . (8.87)

Insertion of GTI/(mc) and WTI/(mc2) from (8.86) and (8.82), respectively,
shows that the inequality in (8.87) is satisfied for all τ2 ≥ 0 with ΔV1 and ΔV2
given in (8.83) under the restriction on the value of the external force given
in (8.84). Also, for eE0τ2/(mc) � 1 the radiated momentum is greater than
zero under the restriction on the external force in (8.84). If C0 ≥ 2 then the
radiated momentum is greater than zero for all τ2 ≥ 0 under the restriction on
the external force in (8.84). These results further confirm the interpretation of
WTI and GTI as energy and momentum, respectively, radiated by the charged
sphere during the transition intervals.

In the next section, the behavior of the solution to the equation of motion
in the transition intervals is ignored and the method of successive substitutions
is used to derive a power series solution to the rectilinear equation of motion
and to the general equation of motion — the first two terms of the latter
power series equaling the Landau-Lifshitz approximation [51, sec. 76].

8.3 Power Series Solution to the Equation of Motion

The pre-acceleration solution in (8.16) to the uncorrected rectilinear equa-
tion of motion (8.6) was derived in Section 8.1, and the solution (8.72) to the
corrected rectilinear equation of motion (8.58) was derived in Section 8.2.2,
under the assumption that the O(a)/m terms in (8.6) and (8.58) were neg-
ligible. (Of course, the O(a)/m terms vanish and τe remains a fixed value if
a → 0 while m is renormalized to a finite value.) In this section we shall use
the method of successive substitutions to derive a power series solution to the
uncorrected rectilinear equation of motion (8.6) and the uncorrected general
equation of motion (7.1) or (7.12). (The uncorrected equations of motion omit
the correction force fa(t) that exists only in the transition intervals following
each nonanalytic point in time of the external force Fext(t) and that elimi-
nates the noncausality from the exact solution to the uncorrected equations
of motion; see Section 8.2. If the external force were an analytic function of
complex time about the real time axis for all time from −∞ < t < +∞, no
correction transition force would be required.) We begin with the derivation
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of a power series solution to the proper-frame equation of motion because of
its relative simplicity.

The equation of motion of the charged spherical insulator in its proper
inertial frame of reference can be written from (5.12a) as

u̇ =
Fext

mes
+

e2

6πε0mesc3 ü + O(a2) (8.88)

wherein it is assumed that a is small enough that the mass mins of the insulator
is negligible compared to the electrostatic mass mes = e2/(8πε0ac2), which is
of order 1/a. Take the u̇ given in (8.88) and substitute it into ü and all the
other derivatives of u on the right-hand side of (8.88). Repeat this substitution
process successively to obtain the following power series solution for u̇ in the
proper reference frame

u̇ =
1

mes

∞∑
n=0

(
e2

6πε0mesc3

)n dnFext

dtn
+ O(a3) . (8.89)

In view of (8.24b)–(8.24d), the O(a3) terms in (8.89) are negligible if

2a

c

∣∣∣∣dnFext

dtn

∣∣∣∣� (n + 1)
∣∣∣∣dn−1Fext

dtn−1

∣∣∣∣ , n = 1, 2, . . . (8.90a)

and
a

c

|Fext|
mes

� c . (8.90b)

The conditions in (8.90a) state that the fractional changes in the externally
applied force and its first and higher order time derivatives are small during
the time interval it takes light to traverse the radius of the charged sphere.
Condition (8.90b) implies that the externally applied force is not large enough
to change the velocity by a significant fraction of c in the time interval light
takes to traverse the charged sphere. If the externally applied force satisfies
the conditions (8.90) so that the O(a3) terms are negligible, (8.89) can just
as well be rewritten as

u̇ =
1

mes

(
Fext +

e2

6πε0mesc3

dFext

dt

)
+ O(a3) (8.91)

with the O(a3) terms in (8.91) also negligible under the conditions in (8.90).
In general, dnFext(t)/dtn will contain delta functions and their derivatives
at t = 0 when the external force is first applied and thus the power series
solutions in (8.89) and throughout this section will not generally converge at
t = 0.

If the radius a of the charged sphere is allowed to approach zero in the
equation of motion and the mass mes is renormalized to a finite value m,
equations (8.88) and (8.89) reduce to
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u̇ =
Fext

m
+ τeü (8.92)

and

u̇ =
1
m

∞∑
n=0

τn
e

dnFext

dtn
(8.93)

with τe given in (8.7) as e2/(6πε0mc3). Moreover, if the terms of higher order
than n = 1 in (8.93) are negligible, that is∣∣∣∣∣

∞∑
n=2

τn
e

dnFext

dtn

∣∣∣∣∣�
(

|Fext|, τe

∣∣∣∣dFext

dt

∣∣∣∣
)

(8.94)

then (8.93) can be approximated by

u̇ ≈ 1
m

(
Fext + τe

dFext

dt

)
. (8.95)

In other words, just the first of the successive substitutions into (8.92) gives an
accurate approximate solution to the proper-frame Lorentz-Abraham-Dirac
equation of motion. For an electron, the conditions in (8.94) are satisfied
except for changes in the external force that are so rapid that the effect of
these changes may not be accurately described by classical physics.

8.3.1 Power Series Solution to Rectilinear Equation of Motion

The uncorrected equation for rectilinear motion in an arbitrary inertial ref-
erence frame for the charged insulator with m = mes can be expressed from
(8.6) in the form

V ′(τ) =
Fext(τ)

mes
+

e2

6πε0mesc3 V ′′(τ) + O(a2) . (8.96)

Applying the method of successive substitutions to (8.96), as we did to (8.88),
we find the power series solution for V ′(τ), namely

V ′(τ) =
1

mes

∞∑
n=0

(
e2

6πε0mesc3

)n dnFext(τ)
dτn

+ O(a3) (8.97)

which can be rewritten as

V ′(τ) =
1

mes

(
Fext(τ) +

e2

6πε0mesc3

dFext(τ)
dτ

)
+ O(a3) . (8.98)

The power series solution in (8.98) can be integrated with respect to the
proper time to find V(τ) as
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V(τ) =
1

mes

⎡
⎣ τ∫

0

Fext(τ ′)dτ ′ +
(

e2

6πε0mesc3

)
Fext(τ)

⎤
⎦+ O(a3) . (8.99)

The solution in (8.98)–(8.99) for the rectilinear velocity function of the charged
insulator of radius a contains no runaway solutions, no pre-acceleration, and is
obtained using the single initial condition of zero velocity immediately before
the external force is applied. Of course, an arbitrary constant velocity could
be added to the right-hand side of (8.99) if the velocity were not zero before
the external force were applied. However, regardless of the initial conditions
the series solution in (8.97) contains spurious delta functions and their time
derivatives at τ = 0 that violate the conditions (8.90) and do not satisfy the
uncorrected equation of rectilinear motion (8.96) (or the corrected equation
of motion (8.49) with the transition force given by (8.68)).

The two terms in the brackets of (8.99) can also be found from the pre-
acceleration solution (8.16) (with mes replacing m) by expanding the external
force Fext(τ + τ ′) in a Taylor series about the present time τ (assuming this
expansion exists for τ > 0), so that integrating term by term yields [34], [52]

V(τ) =
1

mes

⎡
⎣ τ∫

0

Fext(τ ′)dτ ′ +
∞∑

n=0

(
e2

6πε0mesc3

)n+1 dnFext(τ)
dτn

⎤
⎦ . (8.100)

However, this expansion (8.100) of the pre-acceleration integral in (8.16) does
not, in general, yield a valid asymptotic series solution to (8.6) beyond the
first term in the summation of (8.100) because (8.16) was derived from the
equation of motion (8.6) by neglecting self-force terms of order a2. In other
words, the O(a3) terms in (8.100) are not equal to the O(a3) terms in (8.99).
(Recall that 1/mes = O(a).)

It should also be noted that the power series solution (8.100) converges to
the pre-acceleration solution (8.16) for τ > 0 but not for τ < 0. The reason
for this discrepancy between the series solution (8.100) and the exact solution
(8.16) to (8.6) with the O(a)/mes = O(a2) terms omitted is that Fext(τ + τ ′)
cannot be expanded in a Taylor series about τ ≤ 0 for all τ ′ ≥ 0 because
Fext(τ) is identically zero for τ < 0. Also, to within a constant velocity, for
τ > Δta the solutions to the corrected and uncorrected equations of motion
are the same; compare (8.16) with (8.50) for τ > Δta.

When the external force becomes zero after it is applied for a finite time
interval, the power series solution (8.99), like the pre-acceleration solution
(8.16), produces the same final velocity that would be produced if the radiation
reaction, the V ′′ term in (8.6), and all higher order terms were neglected. Also,
like the pre-acceleration solution, the effect of the radiation reaction on the
power series solution for the velocity function V, during the time the external
force is applied, approaches zero as aFext/mes as the radius a of the charged
sphere approaches zero. Indeed, the motion of the charged insulator should
be determined solely by the conventional momentum, mesd(γu)/dt, as the
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radius of the shell approaches zero, since the mass mes becomes infinite while
the radiation reaction term remains finite as the radius a approaches zero. As
long as Fext/mes remains nonzero, however, these results do not imply that
the momentum and energy radiated after t = 0

e2

6πε0c5

t∫
0+

γ6u̇2u(t)dt and
e2

6πε0c3

t∫
0+

γ6u̇2(t)dt (8.101)

respectively, for the power series solution of the charged insulator in rectilinear
motion, approach zero as the radius a approaches zero.

If the radius a of the charged sphere is allowed to approach zero and the
mass mes is renormalized to a finite value m, (8.96) and (8.97) reduce to

V ′(τ) =
Fext(τ)

m
+ τeV ′′(τ) (8.102)

and

V ′(τ) =
1
m

∞∑
n=0

τn
e

dnFext(τ)
dτn

. (8.103)

The terms of higher order than n = 1 in (8.103) can be neglected if∣∣∣∣∣
∞∑

n=2

τn
e

dnFext(τ)
dτn

∣∣∣∣∣�
(

|Fext(τ)|, τe

∣∣∣∣dFext(τ)
dτ

∣∣∣∣
)

(8.104)

and (8.103) can be approximated by

V ′(τ) ≈ 1
m

(
Fext(τ) + τe

dFext(τ)
dτ

)
. (8.105)

That is, just the first of the successive substitutions into (8.102) gives an accu-
rate approximate solution to the rectilinear Lorentz-Abraham-Dirac equation
of motion.

8.3.2 Power Series Solution to General Equation of Motion

The general equation of motion in an arbitrary inertial reference frame with-
out the correction function fa(t) that eliminates the pre-acceleration can be
written from (7.1) (with m replaced by mes) as

dui

ds
=

F i
ext

mesc2 +
e2

6πε0mesc2

(
d2ui

ds2 + ui duj

ds

duj

ds

)
+ O(a2) . (8.106)

The method of successive substitutions applied to (8.106) produces the power
series solution
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dui

ds
=

1
mesc2

[
F i

ext +
e2

6πε0mesc2

(
dF i

ext

ds
+

uiFext,jF
j
ext

mesc2

)]
+ O(a3) (8.107)

where
Fext,j ≡ γ(−Fext,Fext · u/c) . (8.108)

If the radius a of the charged sphere is allowed to approach zero while the
mass mes is renormalized to a finite value m, the general equation of motion
(8.106) reduces to the Lorentz-Abraham-Dirac (LAD) equation of motion

dui

ds
=

F i
ext

mc2 + cτe

(
d2ui

ds2 + ui duj

ds

duj

ds

)

=
F i

ext

mc2 + cτe

(
d2ui

ds2 − uiuj
d2uj

ds2

)

=
F i

ext

mc2 + cτeL
i
j

duj

ds
(8.109)

where Li
j = (Ii

j − uiuj)(d/ds) and Ii
j is the four-vector identity matrix such

that Ii
jA

j = Ai for any four vector Ai. The power series solution obtained
by successive substitutions of dui/ds then becomes for the LAD equation of
motion

dui

ds
=

1
mc2

(
F i

ext + cτeL
i
jF

j
ext + (cτe)2Li

jL
j
kF k

ext + (cτe)3Li
jL

j
kLk

l F l
ext + · · ·

)
.

(8.110)
If the third and higher order terms in (8.110) are negligible, that is, if∣∣∣(cτe)2L

β
j Lj

kF k
ext + (cτe)3L

β
j Lj

kLk
l F l

ext + · · ·
∣∣∣� (∣∣∣F β

ext

∣∣∣ , cτe

∣∣∣Lβ
j F j

ext

∣∣∣)
(8.111)

where the superscript β = (1, 2, 3) designates the three-vector part of a four
vector, then (8.110) becomes

dui

ds
≈ 1

mc2

(
F i

ext + cτeL
i
jF

j
ext

)

=
1

mc2

[
F i

ext + cτe

(
dF i

ext

ds
− uiuj

dF j
ext

ds

)]
. (8.112)

With the help of the relationship

uj
dF j

ext

ds
= −duj

ds
F j

ext ≈ − 1
mc2

[
Fext,j + cτe

(
dFext,j

ds
− ujuk

dF k
ext

ds

)]
F j

ext

= − 1
mc2

[
Fext,j + cτe

dFext,j

ds

]
F j

ext (8.113)

(8.112) can be re-expressed in the form
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dui

ds
≈ 1

mc2

[
F i

ext + cτe

(
dF i

ext

ds
+

uiFext,jF
j
ext

mc2

)]
(8.114)

if

cτe

∣∣∣∣∣dF β
ext

ds

∣∣∣∣∣�
∣∣∣F β

ext

∣∣∣ (8.115a)

or, equivalently

τe

∣∣∣∣d(γFext)
dt

∣∣∣∣� |Fext| . (8.115b)

The approximate solution in (8.114) is not always easy to apply in its
present form because the external force on a charged particle is usually exerted
by an external electromagnetic field such that

Fext(t) = e[E0(r, t) + u(t) × B0(r, t)] (8.116)

the right-hand side of which involves u(t) and is a function not only of t
but also of r, the position of the particle, so that dr/dt = u(t). Landau and
Lifshitz [51, sec. 76] have partially alleviated this shortcoming of (8.114) by
writing the external force in the four-dimensional form [13, eq. (18-32)]

F i
ext = eF ij(r, t)uj (8.117a)

Fext,i = eF j
i (r, t)uj (8.117b)

F ij(r, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 −cB0z cB0y E0x

cB0z 0 −cB0x E0y

−cB0y cB0x 0 E0z

−E0x −E0y −E0z 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.118)

F j
i (r, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 cB0z −cB0y −E0x

−cB0z 0 cB0x −E0y

cB0y −cB0x 0 −E0z

−E0x −E0y −E0z 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (8.119)

Use of (8.117a) converts (8.114) to

dui

ds
≈ 1

mc2

[
F i

ext + cτee

(
d(F ijuj)

ds
+

uiFext,jF
j
ext

mc2e

)]
. (8.120)

With d(F ijuj)/ds expressed as
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d(F ijuj)
ds

=
dF ij

ds
uj + F ij duj

ds
=

∂F ij

∂xk
ukuj + F ij duj

ds
(8.121a)

and

F ij duj

ds
≈ 1

mc2 F ij

[
Fext,j + cτe

(
dFext,j

ds
+

ujFext,kF k
ext

mc2

)]
(8.121b)

which, in view of (8.115), can be approximated by

F ij duj

ds
≈ 1

mc2

(
F ijFext,j +

τe

mce
F i

extFext,kF k
ext

)
(8.121c)

(8.120) becomes

dui

ds
≈ 1

mc2

[
F i

ext

(
1 +

τ2
e

m2c2 Fext,jF
j
ext

)
+ τec

(
e
∂F ij

∂xk
ukuj

+
1

mc2 (eF ij + uiF j
ext)Fext,j

)]
. (8.122)

Under the additional assumption that∣∣∣∣ τ2
e

m2c2 Fext,jF
j
ext

∣∣∣∣� 1 (8.123a)

which is equivalent to
|Fext|τe

mc
� 1

γ
(8.123b)

(8.120) becomes equal to the approximate solution derived by Landau and
Lifshitz [51, sec. 76]

dui

ds
≈ 1

mc2

[
F i

ext + τec

(
e
∂F ij

∂xk
ukuj +

1
mc2 (eF ij + uiF j

ext)Fext,j

)]
. (8.124)

This solution is an accurate approximation to the solution of the LAD
equation of motion if the inequalities in (8.111), (8.115), and (8.123) are sat-
isfied. Spohn [38] also concludes that the Landau-Lifshitz solution in (8.124)
is effectively the solution to the LAD equation of motion if the external force
varies slowly on the scale of the parameter τe, that is, if the inequalities in
(8.111), (8.115), and (8.123) are satisfied. However, it is emphasized that the
Landau-Lifshitz solution in (8.124) is an approximate solution to the LAD
equation of motion (8.109), as one can readily see by noting that the radiation
reaction terms in (8.124) are not generally equal to the radiation reaction term
in the LAD equation of motion (8.109) found by inserting dui/ds from (8.124)
into the radiation reaction term of (8.109). Rohrlich [53] argues, nonetheless,
that the Landau-Lifshitz solution in (8.124) is an accurate solution to the
LAD equation of motion to within the limitations of classical physics imposed
by quantum mechanics [51, p. 208], [54]–[55]; see last paragraph of 8.3.3.
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The three-vector part of equation (8.124) can be expressed as [51, p. 213]

m

e

d(γu)
dt

≈ (E0 + u × B0) + τeγ

[(
∂

∂t
+ u · ∇

)
E0 + u ×

(
∂

∂t
+ u · ∇

)
B0

]

+
eτe

mc

[
(u · E0)

c
E0 + c(E0 + u × B0) × B0

]

+
eτeγ

2

mc2

[
(u · E0)2

c2 − |E0 + u × B0|2
]
u (8.125a)

and the fourth component as

mc2

e

dγ

dt
≈ u · E0 + τeγ

[
u ·
(

∂

∂t
+ u · ∇

)
E0

]

+
eτe

m

[
|E0|2 + (u × B0) · E0

]
+

eτeγ
2

m

[
(u · E0)2

c2 − |E0 + u × B0|2
]

(8.125b)

after making use of the relations obtainable from (8.116)–(8.119), namely

F i
ext = eγ

(
E0 + u × B0 ,

u · E0

c

)
(8.126a)

∂F ij

∂xk
ukuj =

γ2

c

[
u · ∇

(
E0 + u × B0 ,

u · E0

c

)

+
(

∂E0

∂t
+ u × ∂B0

∂t
,
1
c
u · ∂E0

∂t

)]
(8.126b)

F ijFext,j = eγ

[
u · E0

c
E0 + c(E0 + u × B0) × B0 , (E0 + u × B0) · E0

]
(8.126c)

F j
extFext,j = e2γ2

[
(u · E0)2

c2 − |E0 + u × B0|2
]

. (8.126d)

As a check, the power equation (8.125b) can also be obtained by taking the
dot product of u with the force equation (8.125a).

The approximate solution (8.125) to the LAD equation of motion can be
derived quite easily from the three-vector equations of motion (7.12a) and
(7.17a), which become as a → 0 and the mass is renormalized to a finite value
m

m
d(γu)

dt
= Fext +

e2

6πε0c3

{
d
dt

[
γ2u̇ +

γ4

c2 (u · u̇)u
]

− γ4

c2

[
|u̇|2 +

γ2

c2 (u · u̇)2
]
u
}

(8.127a)
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mγu̇ = Fext − (Fext · u)
u
c2 +

e2

6πε0c3γ

d
dt

(γ3u̇) . (8.127b)

Substitute γu̇ from (8.127b) into the right-hand side of (8.127a) to obtain the
approximate solution

m
d(γu)

dt
≈ Fext + τe

[
d
dt

(γFext) − γ2

mc2

(
|Fext|2 − (u · Fext)2

c2

)
u
]

. (8.128)

The relationship

d
dt

(γFext) =
dγ

dt
Fext + γ

dFext

dt
≈ (u · Fext)Fext

mc2 + γ
dFext

dt
(8.129)

converts (8.128) to

m
d(γu)

dt
≈ Fext + τe

[
(u · Fext)Fext

mc2 + γ
dFext

dt

− γ2

mc2

(
|Fext|2 − (u · Fext)2

c2

)
u
]

(8.130a)

which possesses the corresponding power equation of motion

mc2 dγ

dt
≈ u · Fext + τe

{
γ2

mc2

[
(u · Fext)2 − |Fext|2u2]+ γu · dFext

dt

}
.

(8.130b)
With Fext = e(E0 + u × B0) and

dFext

dt
= e

(
dE0

dt
+ u × dB0

dt
+ u̇ × B0

)
(8.131)

≈ e

[
dE0

dt
+ u × dB0

dt
+

1
γ

(
E0 + u × B0 − (u · E0)

u
c2

)
× B0

]

(8.130a) becomes

m

e

d(γu)
dt

≈ (E0 + u × B0) + τeγ

[
dE0

dt
+ u × dB0

dt

]
(8.132a)

+
eτe

mc

[
(u · E0)

c
E0 + c(E0 + u × B0) × B0

]

+
eτeγ

2

mc2

[
(u · E0)2

c2 − |E0 + u × B0|2
]
u .

Taking the dot product of u with (8.132a) produces the power equation of
motion

mc2

e

dγ

dt
≈ u · E0 + τeγu · dE0

dt
(8.132b)

+
eτe

m

[
|E0|2 + (u × B0) · E0

]
+

eτeγ
2

m

[
(u · E0)2

c2 − |E0 + u × B0|2
]

.
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These two equations in (8.132) become identical to the ones in (8.125) when
the total time derivatives of E0 and B0 are rewritten as

d
dt

E0(r, t) =
(

∂

∂t
+ u · ∇

)
E0(r, t),

d
dt

B0(r, t) =
(

∂

∂t
+ u · ∇

)
B0(r, t) .

(8.133)
If desired, the partial derivatives with respect to time in (8.133) and (8.125)
can be written from Maxwell’s equations as

∂

∂t
E0(r, t) = c2∇ × B0(r, t) ,

∂

∂t
B0(r, t) = −∇ × E0(r, t) . (8.134)

For rectilinear motion the equations in (8.130) reduce to

mγ2u̇ ≈ Fext

γ
+ τe

dFext

dt
(8.135)

which agrees with (8.105). Note that for hyperbolic motion discussed in Sec-
tion 7.1, the external force is constant and the Landau-Lifshitz solution in
(8.135) is identical to the exact solution in (7.25)–(7.27).

In the following section the Landau-Lifshitz approximation in (8.125) is
solved explicitly for a charged particle moving in a uniform magnetic field.

8.3.3 Charge Moving in a Uniform Magnetic Field

The Landau-Lifshitz approximation (8.124) or (8.125) to the solution to the
LAD equation of motion has been determined explicitly by Spohn [38] for a
number of cases including that of a charge moving in a uniform magnetic field

B0 = B0ẑ (8.136)

where B0 is the constant magnitude of the magnetic induction. To simplify
the derivation, assume that the velocity of the charge is zero in the z direction.
With E0 = 0 and B0 given in (8.136), the approximate equations of motion
in (8.125) reduce to

m
d(γu)

dt
≈ eB0u × ẑ − e2B2

0τeγ
2

m
u (8.137a)

and

mc2 dγ

dt
≈ −e2B2

0τeγ
2

m
u2 . (8.137b)

The power equation (8.137b) can also be found by dotting u into (8.137a).
Next, cross u into (8.137a) to get

mγu × u̇ ≈ −eB0u
2ẑ . (8.138a)

Taking the magnitude of both sides of this equation further gives
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mγ|u × u̇| ≈ eB0u
2 . (8.138b)

Since the instantaneous radius of curvature of the trajectory of a particle
moving in a plane is given by

R(t) =
u3

|u × u̇| (8.139)

(8.138b) combines with (8.139) to yield the instantaneous radius of curvature
as

R(t) ≈ mγu

eB0
. (8.140)

Writing u2 in terms of γ2 in (8.137b) results in the first order differential
for γ

dγ

dt
≈ −e2B2

0τe

m2

(
γ2 − 1

)
(8.141)

which has the solution
γ − 1
γ + 1

≈ γ0 − 1
γ0 + 1

e−2αt (8.142)

or

γ(t) ≈ γ0 + tanh(αt)
1 + γ0 tanh(αt)

(8.143)

where

α =
e2B2

0τe

m2 (8.144)

and γ0 = γ(0) is the initial value of γ(t) related to the initial speed u0 = u(0)
of the particle by

γ0 =
1√

1 − u2
0/c2

. (8.145)

From the expression for γ(t) in (8.143) we find that the speed u(t) of the
charged particle is given by

u(t) ≈ γ0u0 sech(αt)
γ0 + tanh(αt)

. (8.146)

Therefore, the instantaneous radius of curvature of the particle given in (8.140)
becomes

R(t) ≈ R0 sech(αt)
1 + γ0 tanh(αt)

(8.147)

with the initial radius of curvature given by R0 = mγ0u0/(eB0).
The kinetic energy (W) of the particle is given by

W(t) = mc2γ(t) ≈ W0
γ0 + tanh(αt)

γ0 [1 + γ0 tanh(αt)]
(8.148)

with the initial kinetic energy given by W0 = mc2γ0.
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For t � 1/α the speed and instantaneous radius of curvature decay expo-
nentially as

u(t) ∼ 2γ0u0

γ0 + 1
e−αt (8.149)

and
R(t) ∼ 2R0

γ0 + 1
e−αt ∼ m

eB0
u(t) . (8.150)

For t � 1/α the speed, instantaneous radius of curvature, and kinetic
energy of the particle are given approximately as

u(t) ∼ u0

(
1 − α

γ0
t

)
(8.151)

R(t) ∼ R0 (1 − αγ0 t) (8.152)

W(t) ∼ W0

(
1 − αγ0u

2
0

c2 t

)
. (8.153)

Note from (8.152) and (8.153) that the fractional change in radius of curvature
and kinetic energy per unit time are approximately equal when the speed of
the charge is approximately equal to the speed of light — in agreement with
Shen’s results [56]. The expression (8.153) predicts a kinetic energy loss per
revolution (with the period of revolution approximated by T0 = 2πR0/u0)
that agrees exactly with Plass’s result [52, eq. 147], and approximately with
Schwinger’s result [57, eq. I.10] when the speed of the charge equals approxi-
mately the speed of light.

The solution (8.124) for the speed, instantaneous radius of curvature, and
kinetic energy given in (8.146)–(8.148) for a charge moving perpendicular to
a uniform magnetic field is still an approximate solution because (8.124) is
an approximate solution to the Lorentz-Abraham-Dirac equation of motion
(8.109). The approximation will be accurate if the inequalities in (8.111),
(8.115), and (8.123) are satisfied. In particular, the inequality in (8.115b)
becomes

eτeB0

∣∣∣∣d(γu)
dt

× ẑ
∣∣∣∣ ≈ e2τeB

2
0u

m
� eB0u (8.154a)

or, in terms of B0

B0 � m

eτe
(8.154b)

and the inequality in (8.123b) gives

eτeB0u

mc
� 1

γ
(8.155a)

or

B0 � m

eτe

√
1 − u2

0

c2 (8.155b)
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since u/c < 1 and u ≤ u0.
This last inequality, which is more restrictive than the inequality in

(8.154b), can be proven to be a necessary as well as sufficient condition for
the Landau-Lifshitz solution to be a good approximation to the exact LAD
solution by comparing the approximate dγ/dt in (8.141) with the exact dγ/dt
given from (7.17b) as

dγ

dt
= τeγ

(
d2γ

dt2
− γ3

c2 |u̇|2
)

. (8.156)

Note that Fext ·u = eB0(u× ẑ) ·u = 0 in (7.17b). If the approximate solution
in (8.137) is accurate, it can be inserted into the right-hand side of (8.156) to
get a quantity that is approximately equal to the right-hand side of (8.141).
From the approximate solution in (8.137) we find

d2γ

dt2
≈ −2αγ

dγ

dt
= 2α2γ(γ2 − 1) (8.157a)

|u̇|2 ≈ αc2

τeγ4 (1 + ατe)(γ2 − 1) (8.157b)

which, when substituted into (8.156), yields

dγ

dt
≈ −α(γ2 − 1)[1 − ατe(2γ2 − 1)] . (8.158)

Comparing (8.158) with (8.141), we see that the Landau-Lifshitz solution is
a good approximation to the exact solution of the LAD equation of motion if
and only if

ατeγ
2 � 1 (8.159)

which can be re-expressed as

B0 � m

eτe

√
1 − u2

0

c2 . (8.160)

For an electron (8.160) becomes approximately

B0 � 1012

√
1 − u2

0

c2 Tesla. (8.161)

This means that the solution given in (8.146)–(8.148) for the motion of a
slowly moving electron (u2

0/c2 � 1) in a uniform magnetic field becomes an
inaccurate approximation to the exact solution of the LAD equation of motion
(8.109) if the value of the magnitude of the uniform magnetic field is greater
than about 1011 Tesla (1015 Gauss). This enormous value is on the order of
the estimated magnetic fields in neutron stars called magnetars, which have
the highest known magnetic fields in the universe. For extremely high energy
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electrons, (8.161) implies that the approximate solution in (8.146)–(8.148)
becomes inaccurate for much smaller values of the applied magnetic field.
Thus, the trajectory of extremely high energy charged particles in observable
magnetic fields may reveal differences between the Landau-Lifshitz and exact
solutions as well as limitations on the applicability of the LAD equation of
motion.

For the slowly moving charge in a uniform magnetic field, the condition
in (8.160) for the Landau-Lifshitz solution (8.124) to be an accurate solu-
tion to the LAD equation of motion (8.109) is equivalent to the condition in
(8.81) (and (8.170) of Section 8.5 below) sufficient for the corrected LAD equa-
tion of motion (8.168) to satisfy causality while maintaining a non-negative
radiated energy during the transition intervals when the external force is ap-
plied for a finite time. These comparable limiting conditions on the corrected
LAD equation of motion and the Landau-Lifshitz approximate solution to the
original (uncorrected) LAD equation of motion is compatible with Rohrlich’s
contention [53] that the difference between the Landau-Lifshitz approximate
solution and the exact solution to the LAD equation of motion lies within the
limitations of classical physics imposed by quantum mechanics.

8.4 The Finite Difference Equation of Motion

It was shown in Section 8.2 that if the evaluation of the self electromagnetic
force is done properly near the time the external force is first applied, a cor-
rection force fa(t) must be added to the original equation of motion during
the short time interval 0 ≤ t ≤ Δt. With the proper choice of fa(t), this slight
modification removes the pre-acceleration from the solution to the uncorrected
equation of motion. Power series solutions obtained in Section 8.3 to the origi-
nal uncorrected equation of motion also eliminate the pre-acceleration, but at
the expense of introducing spurious delta functions and their derivatives that
do not satisfy either the uncorrected or corrected equation of motion near the
time the external force is first applied.

Through the years a number of other methods have been proposed to
eliminate the pre-acceleration that arises in the solution to the original uncor-
rected equation of motion (7.1) [58]–[62]. However, none of these alternative
methods have been entirely successful because they either eliminate a priori all
derivatives of acceleration [60]–[62], [63] or they sum infinite series expansions
that neglect nonlinear terms [58]–[59]. These latter methods [58]–[59] that
have been proposed to eliminate the pre-acceleration or runaway solutions
from the equation of motion involve determining explicitly the infinite series
of O(a) terms in the self electromagnetic force in (3.3) of the moving charged
insulator of radius a. Specifically, Page [17] wrote down, without showing the
derivation, this infinite series and summed it in closed form to reveal that the
self electromagnetic force in the proper frame of reference of the charge can
be expressed as



8.4 The Finite Difference Equation of Motion 113

Fem(t) =
e2

12πε0a2c
u(t − 2a/c), u = 0 (8.162a)

or, in an inertial frame in which the charge is moving with nonzero velocity
much less than the speed of light, as

Fem(t) =
e2

12πε0a2c
[u(t − 2a/c) − u(t)], (u/c)2 � 1 (8.162b)

provided all nonlinear terms involving products of the time derivatives of the
velocity are neglected and the correction force fa(t), explained in Section 8.2,
is ignored.

Equations (8.162) can also be found by discarding all but the first series in
the double infinite series that Schott [64] derived for the self electromagnetic
force on the noncontracting sphere (Abraham’s nonrelativistically rigid model
rather than Lorentz’s relativistically rigid model of the electron). The infinite
number of discarded series involve nonlinear products in Schott’s expression
that would change for the relativistically rigid model of the electron; however,
the linear first series is the same for both relativistically and nonrelativistically
rigid models of the electron. ( A simple proof of (8.162) is given in Appendix
D.)

When the self electromagnetic force (8.162b) is used in the derivation of
the equation of motion given in Chapter 5, we obtain

Fext(t) = (mins + M0)u̇(t) − e2

12πε0a2c
[u(t − 2a/c) − u(t)], (u/c)2 � 1

(8.163)
for the nonrelativistic equation of motion. Again, the nonlinear product terms
have been neglected in (8.163), and the negative bare mass M0 is given as
−mes/3 in (5.11). (If the bare mass were omitted in (8.163), the rest mass of
the charged shell would not equal mins + mes.) A relativistic generalization
of the finite difference equation (8.162b) has been obtained by Caldirola [59],
[65]. Similarly, a relativistic generalization of (8.163) to an arbitrary inertial
reference frame can be found by replacing Fext(t) with F i

ext(s), u̇(t) with
dui(s)/ds, u(t − 2a/c) with ui(s − 2a),9 and u(t) with g(s)ui(s), the scalar
factor g(s) inserted to make F i

extui(s) = 0. We then have

F i
ext(s) = (mins + M0) c2 dui(s)

ds
− e2

12πε0a2

[
ui(s − 2a) − g(s)ui(s)

]
(8.164a)

with
9 In the proper frame (u(t) = 0), the three-vector part of the relativistic general-

ization ui(s − 2a) reduces to u(t − 2a/c)/
√

1 − u2(t − 2a/c)/c2 rather than just
u(t − 2a/c). However, to within the approximation that the nonlinear terms in-
volving products of time derivatives of velocity are neglected in the proper frame,
u(t − 2a/c)/

√
1 − u2(t − 2a/c)/c2 can be replaced by u(t − 2a/c).
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F i
ext(s)ui(s) = 0 = ui(s)ui(s − 2a) − g(s) . (8.164b)

so that g(s) = ui(s)ui(s − 2a) = uj(s − 2a)uj(s) and

F i
ext = (mins + M0) c2 dui

ds
− e2

12πε0a2

[
ui(s − 2a) − ui(s)uj(s)uj(s − 2a)

]
.

(8.165)
Notwithstanding the appealing simplicity of the finite difference equation

(8.163) and its relativistic generalization (8.165), there is little justification
to accept them as valid equations of motion that are accurate beyond the
usual radiation reaction terms, since (8.162) and (8.163) neglect all nonlinear
product terms (involving derivatives of velocity), which are not necessarily
negligible for the Lorentz model of the electron beyond the ü proper-frame
radiation reaction term.

It can be shown that the nonlinear and linear parts of the self electromag-
netic force are both zero for certain radiationless motion of a nonrelativisti-
cally rigid spherical shell, namely, when the shell oscillates with an amplitude
smaller than its radius and a period equal to 2a/c [66]–[68]. These radia-
tionless oscillations with the self electromagnetic force (8.162) equal to zero
would not, in general, be self sustaining, that is, Fext(t) would not equal zero
in (8.163) except for the special case of mins+M0 equal to zero. (For Lorentz’s
relativistically rigid model of the electron, Pearle [68] has shown that bounded
radiationless motions do not exist.)

The work of Herglotz [39] and Wildermuth [40], discussed in Section 8.2,
would suggest that the finite difference (linearized) equation of motion (8.163)
does not, in general, eliminate the pre-acceleration, that is, runaway solutions
for t < 0. This can be demonstrated for rectilinear motion by letting the
velocity in (8.163) have exp(qt) time dependence when Fext(t) is set equal to
zero. The equation that results for q, when the material mass of the insulator
is negligible, is then

e−2aq/c = 1 − aq/(2c) (8.166)

which has the positive real solution

q ≈ 2(1 − 5e−4)
1 − 4e−4

c

a
≈ 1.96

c

a
. (8.167)

(If the mass of the insulator is not negligible, the equation for q also has a
real positive solution provided a is small enough for the value of mins +M0 to
be negative.) This failure of the finite difference equation of motion (8.163) to
eliminate the homogeneous runaway solutions (so that pre-acceleration will
still arise when the asymptotic condition in (8.12) is applied), coupled with
the fact that the finite difference equation (8.163) neglects all nonlinear terms
involving products of the time derivatives of velocity, leaves little reason to
prefer (8.163) or its relativistic generalization (8.165) to the equation of motion
that simply neglects the O(a) terms in (7.1). Moreover, like (7.1) the finite
difference equation of motion (8.163) neglects the transition force f i

a in the
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corrected equation of motion (8.43). And, as Section 8.2 shows, it is this
small but important correction to the conventional equation of motion that
eliminates the noncausal pre-acceleration.

8.5 Renormalization of the Equation of Motion

The four-vector form of the Lorentz-Abraham equation of motion for a charged
insulating sphere of radius a, charge e, and mass m equal to mes+mins is given
in (7.1) and in (8.43) with the transition forces f i

a =
∑N

n=1 f i
an that remove the

pre-acceleration (and pre-deceleration) from the original equation of motion.
If the radius a of the charged sphere is allowed to approach zero, while keep-
ing the mass m at a fixed value (mass renormalization), the contribution of
the O(a) terms goes to zero (except possibly at nonanalytic transition points
in time of the externally applied force) and the original equation of motion
in (7.1) becomes identical to the Lorentz-Abraham-Dirac (LAD) equation of
motion [12]. The equation of motion in (8.43) then becomes equal to the LAD
equation of motion modified by transition forces in the proper time intervals
Δta → 0 following the points in times where the externally applied force is
not locally expandable in a power series; for example, at the time t = 0 when
the external force is first applied. This modified LAD equation of motion can
be written from (8.43) as

F i
ext +

N∑
n=1

f i
an = mc2 dui

ds
− e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)
. (8.168)

The transition forces f i
an in (8.168), which approach delta functions and their

derivatives as a → 0, remove the noncausal pre-acceleration and pre-decelera-
tion from the original LAD equation of motion. Moreover, the analysis of rec-
tilinear motion in Section 8.2.5 shows that the jumps in velocity10 associated
with the transition forces f i

an(t) can be chosen to conserve momentum-energy
in the equation of motion while maintaining a non-negative radiated energy
during the transition intervals, provided the proper-frame acceleration outside
the transition intervals is bounded by

|u̇|τe

c
� 1 , τe =

e2

6πε0mc3 (8.169)

the same condition in (8.24c) for neglecting the O(a) terms in the equation of
motion of the extended charged sphere before the mass is renormalized (and
thus τe = 4a/(3c)). This condition is satisfied if the external force obeys the
inequality
10 A consequence of letting a → 0, and thus Δta → 0, while renormalizing the mass

to a finite value is that changes in velocity across the transition intervals Δta

become abrupt.
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|Fext|τe

mc
� 1 . (8.170)

There is some justification, even in classical physics, for renormalizing the
mass mes +mins to a finite value m as a → 0 and mes = e2/(8πε0ac2) → ∞ to
obtain the equation of motion of a point charge. It was mentioned in Chapter
5 that mins may be negative because it can include gravitational and other
attractive formation energies [20], [21]. Thus, as a → 0 it is conceivable that
mins → −∞ and that lima→∞(mes +mins) = m, the measured rest mass. It is
especially disconcerting, therefore, that for the renormalized causal equation of
motion (8.168), the restriction in (8.169) on the magnitude of the acceleration,
or in (8.170) on the magnitude of the externally applied force, is needed to
ensure this equation of motion satisfies conservation of momentum-energy
while keeping the value of the energy radiated during the transition intervals
equal to or greater than zero. For the extended charged sphere, the condition
(8.169) is understandable because it is the same as the condition in (8.24c)
needed, in general, to neglect the O(a) terms in the proper-frame equation
of motion (and to ensure that the infinite series comprising O(a) converges).
This condition merely implies that the O(a) terms may not be negligible if the
speed of the charged sphere changes by an appreciable fraction of the speed
of light in the time it takes light to cross the sphere. As a → 0 and the mass
is renormalized to a finite value m, however, the conditions in (8.24) are all
satisfied except possibly at the nonanalytic transition points in time of the
external force where the first and higher order derivatives of the velocity can
become singular. One would hope that accounting for these singularities at the
transition intervals as a → 0 by the transition forces f i

an in the modified LAD
equation of motion (8.168) would rectify the equation of motion regardless of
the magnitude of the externally applied force. This is not the case, however,
if the external force is large enough to disobey (8.170) because then we have
shown that the value of the energy radiated during the transition intervals
can become negative, that is, the momentum-energy of the charged particle
is not conserved by the equation of motion while maintaining a non-negative
radiated energy during the transition intervals; see Footnote 8.

For an electron in an external electric field E, the inequality in (8.170)
is satisfied unless E 
� mc/(eτe) = 6πε0m

2c4/e3 = 2.7 × 1020 Volts/meter,
an enormously high electric field. Nonetheless, an equation of motion of a
mass-renormalized point charge that is both causal and conserves momentum-
energy while avoiding a negative radiated energy during the transition inter-
vals no matter how large the value of the external force does not result by
simply equating the sum of the point-charge radiation reaction force and the
externally applied force to the relativistic Newtonian acceleration force (mea-
sured rest mass times relativistic acceleration) and inserting delta-function
transition forces at the nonanalytic points in time of the external force to
obtain (8.168). A causal classical equation of motion of a mass-renormalized
point charge that also conserves momentum-energy with a non-negative radi-
ated energy during the transition intervals for arbitrarily large values of the



8.5 Renormalization of the Equation of Motion 117

external force, if it exists, must involve a more complicated combining of the
Newtonian and radiation reaction forces with the externally applied force than
just a summation.11 It seems prudent, therefore, to simply accept (8.168) as
the classical causal equation of motion of a mass-renormalized point charge
under the restriction in (8.170) on the magnitude of the externally applied
force, or to tolerate the noncausality in the original LAD equation of motion
given by (8.168) without the transition forces f i

an, especially since these tran-
sition forces lead to jumps in velocity across the transition intervals that are
not uniquely determined by the externally applied force.

Ultimately, a fully satisfactory equation of motion of a mass-renormalized
point charge may require a unified theory of inertial and electromagnetic forces
as well as the introduction of quantum effects. Renormalization of the mass
of the charged sphere as its radius shrinks to zero is an attempt to extract the
equation of motion of the point electron from the classical self electromagnetic
forces of an extended charge distribution. Such attempts, as Dirac wrote [69],
“bring one up against the problem of the structure of the electron, which has
not yet received any satisfactory solution.”

11 To recapitulate the essence of the argument, if the external force Fext(t) is an
analytic function of complex t in a neighborhood of the real t axis except at
the time t = 0 when the external force is first applied to the charge e, we have
proven from the Maxwell-Lorentz equations that as a → 0 the radiation reaction
four-force equals [e2/(6πε0)](d2ui/ds2+uiduj/ds duj/ds) for all t > 2γa/c = 0+.
Therefore, if the external four-force plus the radiation reaction four-force equals
mc2dui/ds, where m is the measured rest mass of the charge, then

F i
ext +

e2

6πε0

(
d2ui

ds2 + ui duj

ds

duj

ds

)
− mc2 dui

ds
= 0 during t > 0+ (8.171)

for a point charge e with fixed rest mass m. Between t = 0 and t = 0+, the
left-hand side of (8.171) is not equal to zero and its values during this short
time interval that approaches zero as a → 0 cannot generally be determined
by the Maxwell-Lorentz equations (because of the unknown time dependence of
the velocity during this interval). Yet, if a solution exists, the left-hand side of
(8.171) must equal some function (or generalized function such as a delta function)
between t = 0 and t = 0+ that can be denoted by −f i

a1(s) and that is needed
to preserve causality. If the external force has N nonanalytic points in time,
there are N transition distribution functions f i

an(s) needed to preserve causality
and the resulting equation of motion is given in (8.168). Since we have proven
that causal solutions to (8.168) can violate the requirement of momentum-energy
conservation with non-negative radiated energy during the transition intervals if
the magnitude of the external force is not restricted by the inequality in (8.170),
it follows that (8.171) cannot hold exactly for extremely large external forces.
In other words, the generalization of Newton’s second law of motion to classical
point charges with renormalized mass is incompatible with the Maxwell-Lorentz
equations and conservation of energy if the magnitude of the externally applied
force becomes too large. The renormalized causal classical equation of motion of
a point charge encounters a “high acceleration catastrophe.”
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A

Derivation and Transformation of
Small-Velocity Force and Power

In this appendix, we derive the proper-frame force equation of motion (3.3)
and the small-velocity Lorentz power equation of motion (3.4) directly from
the self electromagnetic force and power integrals of the spherical shell of
charge. We then transform (3.3) relativistically to obtain the force equation
of motion (2.1) for arbitrary velocity. A relativistic transformation of (3.4),
however, leads to the erroneous result (3.5) for the power equation of motion
rather than the power equation of motion (2.4). We also show that (2.4) does
not transform covariantly, thereby confirming that the general power equation
of motion (2.4) is not produced by a relativistic transformation of the small-
velocity power equation of motion (3.4); see Section 3.1.

Lorentz [4] and numerous modern physics texts, for example [13], [18],
[34], have derived the Lorentz force equation of motion (3.3) in the proper
(instantaneous rest) frame. But none, as far as I am aware, have directly
derived the small-velocity power equation of motion (3.4), because it requires
taking into account the variation of the velocity over the charge distribution.
Of course, (3.4) could be obtained by letting u/c become much less than unity
in the general power equation of motion (2.4), which was rigorously derived
by Schott [16]. (As discussed in Chapter 3, Schott’s impressive derivation is
so involved and lengthy that it discourages a detailed re-examination. Thus
we provide an alternative, simpler, yet rigorous derivation of the general force
and power equations of motion, (2.1) and (2.4), in Appendix B.)

A.1 Derivation of the Small-Velocity Force and Power

A.1.1 Derivation of the Proper-Frame Force

The self electromagnetic force on the spherical shell of charge in its proper
(instantaneous rest) inertial frame of reference can be expressed by the Lorentz
force integral in (3.1) with u(r, t) = 0, that is
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Fem(t) =
∫

charge

E(r, t) de , u(r, t) = 0 (A.1)

where the element of charge ρ(r, t)dV in (3.1) is relabeled de in (A.1). The
self electric field E(r, t) on the charge de at position r is produced by the
remainder of the charge in the spherical shell. Specifically, the charge de′ at
the position r′(t′) produces an electric field dE(r, t) given by [13]

dE(r, t) =
de′

4πε0

[
1 − R̂′ · u/c

]3
{

R̂′

R′c2 ×
[(

R̂′ − u(r′, t′)
c

)
× u̇(r′, t′)

]

+
1

R′2

[
1 − u2(r′, t′)

c2

] [
R̂′ − u(r′, t′)

c

]}
(A.2)

where u(r′, t′) and u̇(r′, t′) refer to the velocity and acceleration of the charge
de′ at the retarded time

t′ = t − R′

c
(A.3)

that is

u(r′, t′) =
dr′(t′)

dt′
(A.4)

u̇(r′, t′) =
d2r′(t′)

dt′2
. (A.5)

The vector R′ is defined as the difference between the position r of de and
the position r′(t′) of de′ at the retarded time t′

R′ = r − r′(t′) . (A.6)

When one expands R′, u(r′, t′), and u̇(r′, t′) about the present time t, as
the radius of the charge shell becomes small, one obtains the following power
series expansion of dE(r, t) in (A.2)

dE(r, t)=
de′

4πε0

{
R̂
R2 − 1

2c2R

[
R̂ · u̇(r′, t)R̂ + u̇(r′, t)

]
− 3

8
|u̇(r′, t)|2

c4 R̂

+
3
4
R̂ · u̇(r′, t)

c4 u̇(r′, t) +
3
8

[R̂ · u̇(r′, t)]2

c4 R̂ +
2
3
ü(r′, t)

c3 + O(R)

}
(A.7)

with R = r − r′(t), and u(r′, t) = 0. Equation (A.7) differs from the corre-
sponding expression in [13] where the dependence of R′ in (A.6) upon the
retarded time is ignored. Also, (A.7) differs from the corresponding equation
in [18] and [34] as well as [13] by including the spatial dependence of the ac-
celeration and its time derivative over the charge distribution. Both of these
differences vanish, as we shall see below, when (A.7) is integrated over de′ to
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get E(r, t) and then E(r, t) is integrated over de in (A.1) to get the self elec-
tromagnetic force and the Lorentz force equation of motion. These differences
do not vanish in the subsequent derivation of the self electromagnetic power
and thus cannot be ignored in the derivation of the power equation of motion.

The acceleration u̇(r′, t) of the charge de′ at the position r′(t) can be
written in terms of the acceleration u̇(t) of the center of the shell by using
the requirement of special relativity that the spherical shell contracts to an
oblate spheroid (to order R2) as the speed increases. Specifically, we find for
u(r′, t) = 0

u̇(r′, t) = u̇(t) − r′ · u̇(t)
c2 u̇(t) + O(R2) (A.8)

and
ü(r′, t) = ü(t) + O(R) . (A.9)

Substituting (A.8) and (A.9) into (A.7) and integrating over de′ gives the final
form for the self electric field at (r, t) in terms of the acceleration (u̇) and the
time derivative of acceleration (ü) of the center of the shell of charge1

E(r, t) =
1

4πε0

∫
charge

{
R̂
R2 +

1
2c2R

[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ + u̇

]

+
3
8
R̂
c4

[
(R̂ · u̇)2 − |u̇|2

]
+

3(R̂ · u̇)u̇
4c4 +

2ü
3c3 + O(R)

}
de′, u = 0. (A.10)

Next insert the self electric field from (A.10) into (A.1) and perform the
double integration over the shell of charge. All the terms with an odd number
of products of R̂ or r′ integrate to zero and the remaining even product terms
integrate to give the familiar expression for the self electromagnetic force in
the proper frame of reference

Fem(t) = − e2

6πε0ac2 u̇ +
e2

6πε0c3 ü + O(a), u = 0 . (A.11)

Equating the sum of the externally applied force and the self electromag-
netic force to zero, as Lorentz did in his original work [4], one obtains the
Lorentz force equation of motion (3.3) in the proper frame of the spherical
shell of charge.
1 Actually, the de′ integration should be over all charge except the charge de = ρdV

on which we are calculating the self force. However, the field produced by ρdV
within its own volume dV approaches zero as dV → 0 for both stationary and
moving charge [73, sec. 2.1.10]. Thus, the value of the integration over all charge
is the same as its value with de omitted as de → 0.
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A.1.2 Derivation of the Small-Velocity Power

The power delivered to the moving charge by the self electromagnetic forces
within the charge distribution is given by the charge integral in (3.2), namely

Pem(t) =
∫

charge

u(r, t) · E(r, t)de (A.12)

where again the element of charge ρ(r, t)dV in (3.2) is relabeled as de in
(A.12). The velocity u(r, t) of the charge distribution in (A.12) is arbitrary. For
small velocity, u(r, t) can be written in terms of the velocity and acceleration
of the center of the shell by using the information that the spherical shell
contracts to an oblate spheroid (to order R2) as the speed of the charge
increases; specifically

u(r, t) = u(t) − r · u(t)
c2 u̇(t) + O

(
u2

c2 , R2
)

. (A.13)

Repeating the derivation that led to (A.10), with small-velocity instead of
zero velocity, shows that (A.10) also remains valid to order u2/c2, that is

E(r, t) =
1

4πε0

∫
charge

{
R̂
R2 +

1
2c2R

[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ + u̇

]

+
3
8
R̂
c4

[
(R̂ · u̇)2 − |u̇|2

]
+

3(R̂ · u̇)u̇
4c4 +

2ü
3c3 + O

(
u2

c2 , R

)}
de′. (A.14)

Substitution of E(r, t) from (A.14) and u(r, t) from (A.13) into (A.12) allows
Pem(t) to be written as

Pem(t) = u(t)·
∫

charge

E(r, t)de−u̇(t)·
∫∫

charge

R̂
R2

[r · u(t)]
4πε0c2 de′de+O

(
u2

c2 , a

)
. (A.15)

The integral of the electric field in (A.15) is just the self electromagnetic force
given in (A.11). The second integral in (A.15) is the extra term that arises
because the velocity of the charge distribution varies with position around the
shell. It evaluates to

−u̇(t) ·
∫∫

charge

R̂(r · u(t))
4πε0c2R2 de′de = − e2

24πε0ac2 u · u̇ . (A.16)

The self electromagnetic power can thus be written as

Pem(t) = u · Fem(t) − e2

24πε0ac2 u · u̇ + O

(
u2

c2 , a

)
(A.17)
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or

Pem(t) = − 5e2

24πε0ac2 u · u̇ +
e2

6πε0c3 u · ü + O(a),
u2

c2 � 1 . (A.18)

Setting the sum of the power delivered by the externally applied force
Fext · u and the self electromagnetic power Pem(t) equal to zero, as Lorentz
did in his original work [4], one obtains the power equation of motion (3.4)
for charge shells with small velocity (u2/c2 � 1).

A.2 Relativistic Transformation of the Small-Velocity
Force and Power

As explained in Section 3.1 the point relativistic transformations do not nec-
essarily apply to the integrated force and power that comprise the right-hand
sides of the Lorentz force and power equations of motion, (3.3) and (3.4),
respectively. Thus, it is not mathematically rigorous to transform the small-
velocity equations of motion, (3.3) and (3.4), to obtain the corresponding
equations of motion, (2.1) and (2.4), for an arbitrary center velocity of the
charge distribution. Nevertheless, a relativistic transformation of the proper-
frame force equation of motion (3.3) does yield the general force equation
of motion (2.1); whereas, a relativistic transformation of the small-velocity
power equation of motion (3.4) does not yield the general power equation of
motion (2.4). The proofs of these results follow.

A.2.1 Relativistic Transformation of the Proper-Frame Force

Let K be the proper inertial reference frame in which equation (3.3) is derived,
and K ′ be the arbitrary inertial frame in which the velocity of the center of the
charged shell is u′. Thus K has velocity u′ with respect to K ′. Equation (3.3)
can be divided into components parallel and perpendicular to the velocity u′

F‖
ext =

e2

6πε0c2

[
u̇‖
a

−
ü‖
c

]
+ O(a) (A.19a)

F⊥
ext =

e2

6πε0c2

[
u̇⊥
a

− ü⊥
c

]
+ O(a) . (A.19b)

From the relativistic transformation of force

F
′‖
ext = F‖

ext =
e2

6πε0c2

[
u̇‖
a

−
ü‖
c

]
+ O(a) (A.20a)

F
′⊥
ext = F⊥

ext/γ′ =
e2

6πε0c2γ′

[
u̇⊥
a

− ü⊥
c

]
+ O(a) (A.20b)
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with γ′ =
(
1 − u′2/c2

)−1/2. The relativistic transformation of acceleration
and its time derivative

u̇‖ = γ′3u̇′
‖ (A.21a)

u̇⊥ = γ′2u̇′
⊥ (A.21b)

ü‖ = γ′4ü′
‖ +

3γ′6

c2 |u̇′
‖|2u′ (A.22a)

ü⊥ = γ′3ü′
⊥ +

3γ′5

c2 (u′ · u̇′)u̇′
⊥ (A.22b)

substituted into (A.20) produce the equations in the arbitrary K ′ system

F
′‖
ext =

e2

6πε0c2

[
γ′3u̇′

‖
a

−
γ′4ü′

‖
c

− 3γ′6

c3 |u̇′
‖|2u′

]
+ O(a) (A.23a)

F
′⊥
ext =

e2

6πε0c2

[
γ′u̇′

⊥
a

− γ′2

c
ü′

⊥ − 3γ′4

c3 (u′ · u̇′)u̇′
⊥

]
+ O(a) . (A.23b)

Adding (A.23a) to (A.23b), combining terms and removing the primes, results
in the transformed equation of motion

Fext =
e2

6πε0ac2

d
dt

(γu) − e2γ2

6πε0c3

{
ü +

3γ2

c2 (u · u̇)u̇

+
γ2

c2

[
u · ü +

3γ2

c2 (u · u̇)2
]
u
}

+ O(a) (A.24)

which is identical to the general equation of motion (2.1) obtained from the
self electromagnetic force calculated directly in an inertial frame in which the
charge has arbitrary center velocity u.

A.2.2 Relativistic Transformation of the Small-Velocity Power

In an inertial frame K in which the charge has an infinitesimally small center
velocity u, we have from equation (3.4)

Fext · u =
e2

6πε0c2

[
5u̇
4a

− ü
c

]
· u + O(a), u → 0 . (A.25)

In the K ′ frame, moving with velocity −u′ with respect to K (as u approaches
zero), the velocity of the particle is u′. Thus, in the K ′ frame (A.25) becomes

Fext · u′ =
e2

6πε0c2

[
5u̇
4a

− ü
c

]
· u′ + O(a) . (A.26)
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From the relativistic transformations of Fext, u̇, and ü in (A.20a), (A.21a)
and (A.22a), we find

Fext · u′ = F′
ext · u′ (A.27)

and [
5u̇
4a

− ü
c

]
· u′ =

[
5γ′3u̇′

4a
− γ′4ü′

c
− 3γ′6

c3 |u̇′
‖|2u′

]
· u′ . (A.28)

Substituting (A.27) and (A.28) into (A.26) and removing the primes, we ob-
tain the general power equation of motion (3.5)

Fext · u =
5e2

24πε0a

dγ

dt
− e2γ4

6πε0c3

[
u · ü +

3γ2

c2 (u · u̇)2
]

+ O(a) (A.29)

corresponding to the small-velocity power equation of motion (3.4). Unlike
the case of the transformed force equation of motion, (A.29) is not identical
to the power equation of motion (2.4) obtained from the self electromagnetic
power calculated directly in an inertial frame in which the charge has arbitrary
center velocity u. As explained in Section 3.1, we cannot rigorously apply the
point relativistic transformations to the small velocity self electromagnetic
force and power expressions to find the self electromagnetic force and power
of an arbitrarily moving charge, because the charge is distributed over an
extended region of space and not concentrated at a single point moving with
a uniform velocity. The distributed charge motion does not change the final
result of the self electromagnetic force calculation, but does change the 1/a
term in the self electromagnetic power calculation, and the transformation
properties of the self electromagnetic power. Indeed, the next section of this
Appendix A demonstrates that the power equation of motion (2.4) does not
transform covariantly.

A.3 Noncovariance of the Power Equation

Begin with the power equation of motion (2.4) in an arbitrary inertial frame
Ka

Fext ·u =
e2

6πε0a

d
dt

(
γ − 1

4γ

)
− e2γ4

6πε0c3

[
u · ü +

3γ2

c2 (u · u̇)2
]
+O(a). (A.30)

In an inertial frame K ′
w moving with velocity w with respect to Ka, the rela-

tivistic transformations of Fext, u, u̇, ü, and γ in terms of the corresponding
primed variables in the K ′

w frame recast (A.30) in the form

0 = (u′ + w) ·
{
F′

ext − e2

6πε0ac2

(
1 − 1

4γ′2γ2
w(1 + u′ · w/c2)2

)
d(γ′u′)

dt′

+
e2γ2

6πε0c3

[
ü′ +

3γ′2

c2 (u′ · u̇′)u̇′ +
γ′2

c2

(
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
)
u′
]

+ O(a)
}

.

(A.31)
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If (A.31) is to be independent of w and hold for all w (w < c), then the
terms in the curly brackets of (A.31) must be zero, that is

F′
ext =

e2

6πε0ac2

[
1 − 1

4γ′2γ2
w(1 + u′ · w/c2)2

]
d(γ′u′)

dt′
(A.32)

− e2γ2

6πε0c3

[
ü′ +

3γ′2

c2 (u′ · u̇′)u̇′ +
γ′2

c2

(
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
)
u′
]

+ O(a).

Because of the 1/4 term in (A.32), the form of this equation (A.32) depends
explicitly on the velocity w of the K ′

w inertial frame. Thus the form of (A.32)
is not relativistically invariant with respect to a change of inertial frames,
that is, the left- and right-hand sides of the power equation of motion (2.4)
do not transform covariantly because of the −[e2/(24πε0a)]d(1/γ)/dt term.
Of course, it is this very term that the internal binding forces eliminate from
the power equation of motion (2.4); see Chapter 4.



B

Derivation of Force and Power
at Arbitrary Velocity

In this appendix the self electromagnetic force and power are derived from
equations (3.1) and (3.2) for the shell of charge moving with arbitrary velocity.
The 1/a terms are derived from the space integrals in (3.1) and (3.2) evaluated
for arbitrary, time-varying velocity (unlike the traditional heuristic derivation
which assumes a constant velocity charge). The radiation reaction terms are
found from the charge (rather than the space) integrals in (3.1) and (3.2)
evaluated for a shell of charge moving with arbitrary, time-varying velocity.

B.1 The 1/a Terms of Self Electromagnetic
Force and Power

The self electromagnetic force and power of the moving shell of charge can be
written as space integrals of the electromagnetic fields of the moving charge
[15, sec. 2.5, eq. (25) and sec. 2.19, eq. (6)]

F′
em(t′) = −ε0

d
dt′

∫
V

E′(r′, t′) × B′(r′, t′)dV ′ +
∫
S

T̄′ · n̂′dS′ (B.1)

P ′
em(t′) = −ε0

2
d
dt′

∫
V

(E′2 + c2B′2)dV ′ − ε0c
2
∫
S

(E′ × B′) · n̂′dS′ (B.2)

where T̄′ is Maxwell’s stress tensor (dyadic) and the primes denote quantities
in a K ′ inertial frame in which the charge shell has arbitrary center velocity
u′(t′). The volume V is enclosed by the surface S, which encloses the moving
charge distribution.

The force on any part of the charged oblate spheroid (with major axis
2a and minor axis 2a(1 − u′2/c2)1/2 in the K ′ frame will be caused by the
position of the rest of the charge at an earlier time. In particular, the force
field on the leading end of the particle will have left the trailing end of the
particle in a time Δt given approximately for small radius a by
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(c − u′)Δt = 2a
√

1 − u′2/c2 or Δt =
2a

c

√
1 + u′/c

1 − u′/c
. (B.3)

In this time interval Δt the charge will have traveled a distance Δd given
approximately by

Δd = u′Δt =
2u′a

c

√
1 + u′/c

1 − u′/c
. (B.4)

Equation (B.4) says that the motion of the charge, when the charge is farther
away from its present position than some finite number times the radius a, will
not affect the self electromagnetic force calculation. Thus, we can assume, with
no loss of generality in the derivation, that the charge had uniform velocity
when evaluating the fields for r′ greater than La where L is an indefinitely
large but finite number. In other words, if we choose the radius of the surface
S larger by a factor L then the major radius of the oblate spheroidal charge
distribution, the stress tensor T̄′ and the Poynting vector E′×B′ in the surface
integrals of (B.1) and (B.2) can be assumed those of a charge distribution
moving with constant velocity. Because each of these surface integrals is zero
for a constant velocity charge distribution, (B.1) and (B.2) can be written in
terms of the volume integrals alone

F′
em(t′) = −ε0

d
dt′

∫
Va

E′(r′, t′) × B′(r′, t′) dV ′ (B.5)

P ′
em(t′) = −ε0

2
d
dt′

∫
Va

(E′2 + c2B′2) dV ′ (B.6)

with Va denoting a finite volume that encloses the charge distribution and
having a radius La proportional to the dimension a of the charged shell. The
fact that the radius La of the volume Va approaches zero as a approaches zero,
and yet L is an indefinitely large number, is used in the following evaluations
of the 1/a terms of self force and power.

B.1.1 Evaluation of 1/a Term of Self Electromagnetic Force

We want to evaluate the space integral in (B.5) at each instant of time t′. To
begin, let this instant of time be t′ = 0, in order to simplify the integral in
(B.5) to

IF =
∫
Va

E′(r′, 0) × B′(r′, 0) dV ′ . (B.7)

Next write the fields, E′(r′, 0) and B′(r′, 0) in the K ′ frame in terms of the
fields in a proper inertial frame K at rest instantaneously with the center of
the charge distribution at t′ = 0. Assume that the origins of the K and K ′
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frames coincide at t = t′ = 0. Then the relativistic transformations of the
fields are given by

E′(r′, 0) = ᾱ′ · [E(r, t) − u′ × B(r, t)] (B.8a)

B′(r′, 0) = ᾱ′ · [B(r, t) + u′ × E(r, t)/c2] (B.8b)

ᾱ′ = γ′Ī + (1 − γ′)û′û′, γ′ = (1 − u′2/c2)−1/2 (B.8c)

with
r⊥ = r′

⊥ (B.9a)

r‖ = γ′r′
‖ (B.9b)

t = −γ′u′ · r′/c2 (B.9c)

where the subscripts ⊥ and ‖ mean perpendicular and parallel to the center
velocity u′.

Substitute (B.8) and (B.9) into (B.7) and make the change of integration
variable

r = r′
⊥ + γ′r′

‖ (B.10a)

so that
dV = γ′dV ′ (B.10b)

and (B.7) becomes

IF =
1
γ′

∫
Va

ᾱ′ ·
[
E(r, t = −u′ · r/c2) − u′ × B(r, t = −u′ · r/c2)

]

× ᾱ′ ·
[
B + u′ × E/c2]dV . (B.11)

Since we have determined in Appendix C the proper-frame electric and mag-
netic fields, E(r, t) and B(r, t), at a fixed time t, the integral of the fields in
(B.11) could be evaluated if it weren’t for the fact that t = −u′ · r/c2 is not
fixed but varies with the integration variable r. Fortunately, this difficulty can
be overcome, when evaluating the 1/a term, by expanding E(r, t = −u′ ·r/c2)
and B(r, t = −u′ · r/c2) about the fixed time t = 0; specifically

E(r, t) = E(r, 0) +
∂E(r, 0)

∂t
t + · · · (B.12a)

B(r, t) = B(r, 0) +
∂B(r, 0)

∂t
t + · · · . (B.12b)

From Maxwell’s equations all the time derivatives of E(r, 0) and B(r, 0) can
be written in terms of the spatial derivatives

∂B(r, 0)
∂t

= −∇ × E(r, 0) (B.13a)
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∂E(r, 0)
∂t

= c2∇ × B(r, 0) (B.13b)

∂2B(r, 0)
∂t2

= −∇ × ∂E(r, 0)
∂t

= −c2∇ × ∇ × B(r, 0) (B.13c)

and so on. Substitution of the time derivatives from (B.13) converts (B.12) to

E(r, t) = E(r, 0) + c2∇ × B(r, 0)t + · · · (B.14a)

B(r, t) = B(r, 0) − ∇ × E(r, 0)t + · · · . (B.14b)

When the proper-frame electric and magnetic fields, E(r, 0),B(r, 0) and
their curls, are inserted from (C.1) and (C.5) of Appendix C into the right-
hand sides of (B.14), and the resulting fields, E(r, t) and B(r, t), are inserted
into the integrand of (B.11) with t = −u′ · r/c2, one finds that the B field
in the integrand of (B.11) does not contribute to the 1/a term of the integral
and that only the static part of the E field contributes to the 1/a term. In
more detail

IF =
1
γ′

∫
Va(a→0)

[ᾱ′ · E(r, 0)] ×
[
ᾱ′ · (u′ × E(r, 0))/c2]dV + O(1) (B.15)

or since ᾱ′ · (u′ × E) = γ′u′ × E and ᾱ′ · E = γ′E + (1 − γ′)(û′ · E)û′

IF =
∫

Va(a→0)

{
u′ [γ′E2 + (1 − γ′)(û′ · E)2

]
− (u′ · E)E

}
dV + O(1). (B.16)

The electric field E(r, 0) is found by integrating expression (C.1) to get

E(r, 0) =

⎧⎪⎨
⎪⎩

e

4πε0r2 r̂ + O(1/r), r > a

O(1/a), r < a .

(B.17)

Because Va → 0 as a → 0, the integration variable r → 0 as a → 0 and
we are allowed to use this small r approximation of (C.1) for E(r, 0). With
E(r, 0) from (B.17) substituted into the integrand, the integral in (B.16) can
be evaluated for large L to give

IF =
e2u′

4πε20ac2

[
γ′ +

1 − γ′

3
− 1

3

]
+ O(1) =

e2γ′u′

6πε20ac2 + O(1) . (B.18)

For the sake of simplifying the relativistic transformations, (B.18) was
derived for a specific instant of time t′ = 0. This instant of time could be any
instant of time. Thus (B.18) holds for arbitrary time t′, and (B.18) can be
substituted into (B.5) to give the 1/a term of the self electromagnetic force

F′
em(t′) = − e2

6πε0ac2

d
dt′

(γ′u′) + O(1) (B.19)

in the arbitrary K ′ frame.
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B.1.2 Evaluation of 1/a Term of Self Electromagnetic Power

Proceeding with the evaluation of the self power integral in (B.6)

IP =
∫
Va

(E′2 + c2B′2)dV ′ (B.20)

in the same manner as in the previous section for the self force integral, one
gets

IP =
1
γ′

∫
Va(a→0)

[
|ᾱ′ · E(r, 0)|2 + γ′|u′ × E′|2/c2]dV + O(1) . (B.21)

With E(r, 0) inserted from (B.17), (B.21) integrates for large L to

IP =
e2

4πε20a

[
γ′ +

1
3

(
1
γ′ − γ′

)
+

2u′2

2c2 γ′
]

+ O(1)

=
e2γ′

4πε20a

(
1 +

u′2

3c2

)
+ O(1) (B.22)

which, when inserted into (B.6), gives

P ′
em(t′) = − e2

8πε0a

d
dt′

[
γ′
(

1 +
u′2

3c2

)]
+ O(1) (B.23a)

or equivalently

P ′
em(t′) = − e2

6πε0a

d
dt′

(
γ′ − 1

4γ′

)
+ O(1) (B.23b)

for the 1/a term of the self electromagnetic power in the arbitrary K ′ frame.

B.2 Radiation Reaction of Self Electromagnetic
Force and Power

The above derivation for the 1/a terms of the self electromagnetic force and
power in an arbitrary inertial frame from the momentum and energy integrals
in (B.5) and (B.6) does not extend easily to finding the radiation reaction
(O(1)) terms of the self force and power because an infinite number of terms
in the series expansion (B.14) of E(r, t) and B(r, t) contribute to the O(1)
terms of the momentum and energy integrals. Fortunately, we can find the
radiation reaction terms of the self force and power from the charge integrals
of (3.1) and (3.2).
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B.2.1 Evaluation of the Radiation Reaction Force

To determine the O(1) terms of the self electromagnetic force in a K ′ inertial
frame in which the shell of charge is moving with arbitrary velocity, we shall
evaluate the charge integral in (3.1) at an arbitrary instant of time t′. To
reduce the algebra, let this arbitrary time be chosen as t′ = 0, initially, so the
self electromagnetic force in the K ′ frame can be written

Fem =
∫

charge

ρ′(r′, 0)[E′(r′, 0) + u′(r′, 0) × B′(r′, 0)] dV ′. (B.24)

The electric and magnetic fields, E′(r′, 0) and B′(r′, 0), in (B.24) can be ex-
pressed by means of the relativistic transformations (B.8) and (B.9), in terms
of the fields in the proper frame K at rest instantaneously with the center
of the charge distribution at t′ = 0. Since (C.7) of Appendix C can be used
to show that B(r, t) in (B.8) contributes only to terms of higher order than
O(1), E′ and B′ in (B.24) can be written simply from (B.8) as

E′(r′, 0) = ᾱ′ · E(r, t) (B.25a)

B′(r′, 0) = γ′u′ × E(r, t)/c2 (B.25b)

where ᾱ′ is defined in (B.8c), r and t are given in (B.9), and u′ is the velocity
of the center of the charge distribution.

The velocity u′(r′, 0) of the charge distribution in the K ′ frame can be
written in terms of the velocity u(r, t) in the proper frame by means of the
relativistic transformation

u′(r′, 0) =
u(r, t)/γ′ + u′ [u(r, t) · u′(1 − 1/γ′)/u′2 + 1

]
1 + u(r, t) · u′/c2 . (B.26)

Similarly, the charge density ρ′(r′, 0) in (B.24) transforms relativistically to
the proper K frame as

ρ′(r′, 0) = γ′ρ(r, t)
[
1 + u(r, t) · u′/c2] (B.27)

with r and t again given in (B.9). The velocity u(r, t) and the charge density
ρ(r, t) of the charge distribution at t = −γ′u′ · r′/c2 = −u′ · r/c2 in the K
frame can be expanded about t = 0 to give

u(r, t) = −u̇(r, 0)(u′ · r)/c2 + O(r2) (B.28)

ρ(r, t) = ρ(r, 0) − ∂ρ(r, 0)
∂t

u′ · r
c2 + O(r2) . (B.29)

Because u(r, 0) equals zero for a relativistically rigid, nonrotating charge dis-
tribution, ∂ρ(r, 0)/∂t = −∇ · [ρ(r, 0)u(r, 0)] = 0, and (B.29) becomes simply

ρ(r, t) = ρ(r, 0) + O(r2) . (B.30)
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Substituting u(r, t) from (B.28) and ρ(r, t) from (B.30) into (B.27) gives

ρ′(r′, 0) = γ′ρ(r, 0)
[
1 − u′ · u̇(r, 0)(u′ · r)

c4

]
+ O(r2) (B.31)

for the charge density in the K ′ frame. Similarly, substituting (B.28) into
(B.26) and expanding in powers of r gives

u′(r′, 0) = u′ −
[
Īγ′ +

u′u′

u′2 (1 − γ′)
]

· u̇(r, 0)(u′ · r)
γ′2c2 + O(r2) . (B.32)

The acceleration u̇(r, 0) of the charge distribution in the proper frame was
given previously in (A.8) in terms of its center acceleration u̇; thus (A.8)
shows that (B.31) and (B.32) remain valid to O(r2) when the acceleration
u̇(r, 0) is replaced by the center acceleration u̇.

Substitute into (B.24) the expressions (B.25) for E′(r′, 0) and B′(r′, 0),
(B.31) for ρ′(r′, 0), (B.32) for u′(r′, 0) (all with r and t replaced from (B.9)
and the center acceleration u̇ replacing u̇(r, 0) in (B.31) and (B.32)); then
make the change of integration variable from r′ to r⊥ + r‖/γ′ to obtain

F′
em(0) =

∫
charge

ρ(r, 0)
[
1 − (u′ · u̇)(u′ · r)

c4 + O(r2)
] [

ᾱ′ · E(r, t) +
γ′

c2

{
u′

−
[
Īγ′ +

u′u′

u′2 (1 − γ′)
]

· u̇(u′ · r)
γ′2c2 + O(r2)

}
× (u′ × E(r, t))

]
dV (B.33)

with t = −u′ · r/c2. We want to insert E(r, t) from (B.14a) into the integrand
of (B.33); specifically

E(r, t) = E(r, 0) + c2∇ × B(r, 0)t − c2∇ × ∇ × E(r, 0)
t2

2
+ · · · (B.34)

with t = −u′ · r/c2. When one replaces E(r, 0) and B(r, 0) in (B.34) by their
integral values given in (C.1) and (C.5), one finds

E(r, t) = E(r, 0) + terms odd in r̂ +
1
a
(terms even in r̂) . (B.35)

As the radius a of the charged sphere approaches zero, the terms odd in r̂
in (B.35) integrate to zero in (B.33). The 1/a terms in (B.35) integrate to
give 1/a terms when multiplied by the terms of order unity in the integrand
of (B.33), and zero when multiplied by the terms of order r and higher in
(B.33). Also, as a approaches zero, the O(r2) terms in (B.33) integrate to
zero. In all, (B.33) becomes

F′
em(0) =

(
1
a

)
+
∫

charge

ρ(r, 0)
[
1 − (u′ · u̇)(u′ · r)

c4

] [
ᾱ′ · E(r, 0) (B.36)

+
γ′

c2

{
u′ −

[
Īγ′ +

u′u′

u′2 (1 − γ′)
]

· u̇(u′ · r)
γ′2c2

}
× (u′ × E(r, 0))

]
dV + O(a)
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as a approaches zero, where (1/a) in (B.36) denotes the 1/a terms.
Inserting E(r, 0) from (C.1) into (B.36), noting that all odd terms integrate

to zero, and extracting the 1/a terms, we find

F′
em(0) =

(
1
a

)
+

1
4πε0

∫∫
charge

[
ᾱ′ · 2ü

3c3 +
γ′

c2 u′ ×
(
u′ × 2ü

3c3

)]
de′de + O(a)

=
(

1
a

)
+

e2

6πε0c3

[
ᾱ′ · ü +

γ′

c2 u′ × (u′ × ü)
]

+ O(a) (B.37)

where we have let de = ρ(r, 0)dV and performed the double integration of the
constant integrand over the charge.

With

ᾱ′ · ü = γ′ü + (1 − γ′)
(u′ · ü)u′

u′2 (B.38a)

and
γ′

c2 u′ × (u′ × ü) =
−γ′u′2

c2 ü +
γ′

c2 (u′ · ü)u′ (B.38b)

(B.37) can be written as

F′
em(0) =

(
1
a

)
+

e2

6πε0c3

[
ü
γ′ +

(
1 − 1

γ′

)
(u′ · ü)u′

u′2

]
(B.39a)

or

F′
em(0) =

(
1
a

)
+

e2

6πε0c3

[
ü‖ + ü⊥/γ′]+ O(a) . (B.39b)

The derivatives of the acceleration, ü‖ and ü⊥, in the proper K frame can
be expressed in terms of the velocity and its derivatives in the arbitrary K ′

frame by means of the relativistic transformations (A.22). Using these trans-
formations (A.22) converts (B.39b) to

F′
em(t′) =

(
1
a

)
+

e2γ′2

6πε0c3

{
ü′ +

3γ′2

c2 (u′ · u̇′)u̇′

+
γ′2

c2

[
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
]
u′
}

+ O(a) (B.40)

where t′ has replaced t′ = 0 in (B.39) since the time t′ = 0 could be any
instant of time t′.

The order unity term in (B.40) is the radiation reaction part of the self
electromagnetic force. Combining the 1/a part of the self electromagnetic
force in (B.19) with the radiation reaction part in (B.40) produces the total
electromagnetic self force to order a in an arbitrary K ′ inertial reference frame

F′
em(t′) = − e2

6πε0ac2

d
dt

(γ′u′) +
e2γ′2

6πε0c3

{
ü′ +

3γ′2

c2 (u′ · u̇′)u̇′

+
γ′2

c2

[
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
]
u′
}

+ O(a) . (B.41)
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B.2.2 Evaluation of the Radiation Reaction Power

To determine the O(1) terms of the self electromagnetic power in an arbitrary
K ′ frame, begin with the charge integral in equation (3.2) at an arbitrary
instant of time t′ = 0

P ′
em(0) =

∫
charge

ρ′(r′, 0)u′(r′, 0) · E′(r′, 0) dV ′. (B.42)

Applying the same procedure to (B.42) as we applied to (B.24) in the previous
section yields instead of (B.39b)

P ′
em(0) =

(
1
a

)
+

e2

6πε0c3 u′ · ü‖ . (B.43)

Substituting ü‖ from (A.22a) into (B.43), rearranging the expression, and
replacing the arbitrary time t′ = 0 with t′, results in the radiation reaction
power in the arbitrary K ′ frame

P ′
em(t) =

(
1
a

)
+

e2γ′4

6πε0c3

[
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
]

+ O(a) . (B.44)

The 1/a part of the self electromagnetic power in (B.23) combines with (B.44)
to give the total self electromagnetic power to order a in an arbitrary K ′

inertial reference frame

P ′
em(t) = − e2

6πε0a

d
dt′

(
γ′ − 1

4γ′

)
+

e2γ′4

6πε0c3

[
u′ · ü′ +

3γ′2

c2 (u′ · u̇′)2
]

+ O(a).

(B.45)
This completes the derivation of the self electromagnetic force and power

to order a of Lorentz’s model of the electron, that is, a total charge e uniformly
distributed on a spherical insulator of radius a moving without rotation with
arbitrary center velocity u′. To my knowledge, it is the first rigorous derivation
of these results for arbitrary velocity since Schott’s [16] rigorous, yet extraor-
dinarily lengthy derivation from the Liénard-Wiechert potentials; see Chapter
3 of the main text.





C

Electric and Magnetic Fields in a Spherical
Shell of Charge

Consider the Lorentz model of the electron as a total charge e uniformly
distributed within a thin, nonrotating, spherical shell of inner radius a and
thickness δ (see Fig. 4.1 of the main text). In a proper inertial reference frame
at rest instantaneously with the charge distribution, the velocity u(r, t) will
be zero but the acceleration and higher time derivatives of velocity are, in
general, nonzero functions of space and time [u̇(r, t), ü(r, t), . . . ].

In equation (A.10) of Appendix A the electric field produced by this ac-
celerating charge in its proper frame was found to be

E(r, t) =
1

4πε0

∫
charge

{
R̂
R2 +

1
2c2R

[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ + u̇

]

+
3
8
R̂
c4

[
(R̂ · u̇)2 − |u̇|2

]
+

3(R̂ · u̇)u̇
4c4 +

2ü
3c3 + O(R)

}
de′, u = 0 (C.1)

where u̇ and ü in (C.1) refer to the time derivatives of the center velocity
of the charged sphere at time t. The position of the charge element de′ is
designated by r′(t) and the vector R is defined as r − r′(t).

We can find the magnetic field B(r, t) from the simple relationship between
the electric and magnetic fields of a moving point charge [13]. Letting de′

be the moving point charge, and dE(r, t) and dB(r, t) be the electric and
magnetic fields of this point charge, we have

dB(r, t) = R̂′(t′) × dE(r, t)/c (C.2)

where dE(r, t) is the integrand of (C.1) and R′(t′) is defined as r − r′(t′),
the difference vector between the position r of the observation point and the
position r′(t′) of the element of charge de′ at the retarded time t′ = t − R′/c.
Expanding R̂′(t′) in a power series about t and making use of (A.8) gives
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R̂′(t′) = R̂ − R

2c2

[
r′ · u̇
c2 − 1

] [
(R̂ · u̇)R̂ − u̇

]
− R2R̂

[
(R̂ · u̇)2

8c4

+
|u̇|2
8c4 +

(R̂ · ü)
6c3

]
+ R2

[
(R̂ · u̇)u̇

4c4 +
ü

6c3

]
+ O(R3). (C.3)

Substituting R̂′(t′) from (C.3) and dE(r, t) from the integrand of (C.1) into
(C.2), one finds that most of the terms cancel leaving merely

dB(r, t) =

[
R̂(t) × ü
8πε0c4 + O(R)

]
de′ (C.4)

or

B(r, t) =
1

4πε0

∫
charge

[
R̂(t) × ü

2c4 + O(R)

]
de′, u = 0 (C.5)

for the magnetic field in the proper frame.
Equations (C.1) and (C.5) can be integrated in closed form for a uniformly

distributed spherical shell of charge with inner radius a and small thickness
δ. In particular, the expressions for the fields within the thin shell simplify to

E(r, t) =
e

4πε0

[
r − a

δa2 r̂ − 2u̇
3ac2 +

2ü
3c3 +

4
5c4 r̂ ·

(
u̇u̇ − Ī|u̇|2

3

)]
+O(a) (C.6)

B(r, t) =
e

12πε0c4 r̂ × ü + O(a) , (C.7)

u = 0 , (a ≤ r ≤ a + δ) .

The electric field in (C.6) agrees with the results of Page and Adams [70, secs
56–57] except for the 4/5 term in (C.6), which is missing in their work, because
they do not take into account the variation (A.8) in acceleration of the charge
with position around the shell. Also Page and Adams do not include the ü
term in the magnetic field of (C.7).



D

Derivation of the Linear Terms for the
Self Electromagnetic Force

Begin the derivation with the expression (A.2) for the electric field produced
by the moving element of charge de′ in the shell of charge. Since we want to
evaluate this expression (A.2) in a proper reference frame (u(r, t) = 0) dis-
carding all nonlinear terms in u̇, ü, . . . , we see, with the help of the expansion
(C.3) for R̂′(t′), and (A.8) and (A.13) for u̇(r′, t′) and u(r′, t′), that (A.2) can
be simplified immediately to

dE(r, t) =
de′

4πε0

[
R̂ × (R̂ × u̇(t′))

Rc2

+
R̂′ − u(t′)/c

R′2(1 − R̂ · u(t′)/c)3

]
+ nonlinear terms (D.1)

where, of course, R′ is a function of the retarded time t′ = t −R′/c. Inserting
the expansion

[
1 − R̂ · u(t′)

c

]−3

= 1 +
3R̂ · u(t′)

c
+ nonlinear terms (D.2)

into (D.1) gives

dE(r, t) =
de′

4πε0

[
R̂(R̂ · u̇(t′)) − u̇(t′)

Rc2 − u(t′)
R2c

+
3R̂(R̂ · u(t′))

R2c
+

R̂′(t′)
R′2

]
+ nonlinear terms. (D.3)

Now

R′(t′) = R(t)− u̇(t)
2

(
R′(t′)

c

)2

+
ü(t)
6

(
R′(t′)

c

)3

+ nonlinear terms (D.4)
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or with the insertion of the expansion

R′(t′) = R

[
1 − R · u̇

2c2 + · · ·
]

(D.5)

(D.4) becomes

R′(t′) = R − u̇(t)
2

(
R

c

)2

+
ü(t)
6

(
R

c

)3

+ · · · + nonlinear terms (D.6)

that is
R′(t′) = R(t − R/c) + nonlinear terms. (D.7)

Similarly,
u(t′) = u(t − R/c) + nonlinear terms (D.8a)

u̇(t′) = u̇(t − R/c) + nonlinear terms (D.8b)

and
R′(t′) = R(t − R/c) + nonlinear terms (D.8c)

or

R′(t′) = R − Ṙ
R

c
+

R̈

2

(
R

c

)2

−
...
R

6

(
R

c

)3

+ · · · + nonlinear terms. (D.8d)

With
Ṙ =

d
dt

(R · R)1/2 =
R
R

· dR
dt

= R̂ · u = 0 (D.9a)

R̈ = R̂ · u̇ (D.9b)
...
R = R̂ · ü + nonlinear terms (D.9c)

etc., inserted into (D.8d), R′(t′) becomes

R′(t′) = R +
R̂ · u̇

2

(
R

c

)2

+−R̂ · ü
6

(
R

c

)3

+ · · ·+ nonlinear terms. (D.10)

The vector R(t − R/c) can also be expanded in the form

R(t − R/c) = R +
u̇
2

(
R

c

)2

− ü(t)
6

(
R

c

)3

+ · · · + nonlinear terms (D.11)

which combines with (D.10) and (D.7) to give

R′(t′)
R′3(t′)

=
R(t − R/c)

R′3(t′)
=

R
R3

[
1 − 3

R

(
R̂ · u̇

2

(
R

c

)2

− R̂ · ü
6

(
R

c

)3

+ · · ·
)]

+
1

R3

[
u̇
2

(
R

c

)2

− ü(t)
6

(
R

c

)3

+ · · ·
]

+ nonlinear terms. (D.12)
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When we substitute (D.8a), (D.8b) and (D.12) into (D.3), integrate over
de′, then multiply by de = ρdV and integrate over de to get the total self
electromagnetic force, we are left with integrals of the form [17]∫∫

charge

Rmde′de = 3
∫∫

charge

x2

R2 Rmde′de =
2m+1

m + 2
ame2,

m = −1, 0, 1, 2, . . . . (D.13)

We see from (D.13) applied to (D.12) that∫∫
charge

R′(t′)
R′3(t′)

de′de = 0 + nonlinear terms. (D.14a)

Similarly, from (D.13) applied to the u(t′) part of (D.3)∫∫
charge

u(t′)
R2 ·

[
3R̂R̂ − Ī

]
de′de = 0 + nonlinear terms (D.14b)

and from (D.13) applied to the u̇(t′) part of (D.3)∫∫
charge

u̇(t′)
R

·
[
R̂R̂ − Ī

]
de′de = −2

3

∫∫
charge

u̇(t − R/c)
R

de′de

+ nonlinear terms. (D.14c)

Thus, integrating (D.3) over de′ and de and using (D.14) shows that the exact
expression for the total self electromagnetic force on the charge can be written
simply as

Fem(t) =
∫∫

charge

dE(r, t)de = − 1
6πε0c2

∫∫
charge

u̇(t − R/c)
R

de′de

+ nonlinear terms. (D.15)

Since u̇(t − R/c) can be expanded in the power series

u̇(t − R/c) =
∞∑

n=0

1
n!

dn+1u(t)
dtn+1

(
−R

c

)n

(D.16)

substituting (D.16) into (D.15) and applying the integrals (D.13) yields

Fem(t) =
e2

12πε0a2c

∞∑
n=0

(
−2a

c

)n+1 1
(n + 1)!

dn+1u(t)
dtn+1 + nonlinear terms

(D.17)
or
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Fem(t) =
e2

12πε0a2c
u(t − 2a/c) + nonlinear terms, u(t) = 0 (D.18)

or for small velocity

Fem(t) =
e2

12πε0a2c
[u(t − 2a/c) − u(t)] + nonlinear terms,

u2

c2 � 1.

(D.19)
The result (D.18) was stated without proof by Page [17]. It can also be ob-

tained from the first series of a general expression for the self electromagnetic
force, on a nonrelativistically rigid charged sphere, that was derived by Schott
[64]. The linear part of the self electromagnetic force (D.19) is the same for
both relativistically and nonrelativistically rigid spheres.
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19. H. Poincaré: On the dynamics of the electron. Rendiconti del Circolo Matem-
atico di Palermo 21, pp 129–176 (1906); translated by Scientific Translation
Service, Ann Arbor, MI

20. A. Arnowitt, S. Deser, C.W. Misner: Gravitational-electromagnetic coupling
and the classical self-energy problem. Phys. Review 120, pp 313–320 (1960)

21. A.D. Yaghjian: A classical electro-gravitational model of a point charge with
finite mass. Proc. URSI Symp. on Electromagnetic Theory, pp 322–324 (1989)

22. M. Planck: Das Prinzip der Relativitat und die Grundgleichungen der
Mechanik. Deutschen Physikalischen Gesellschaft 8, pp 136–141, (1906)

23. J. Schwinger: Electromagnetic mass revisited. Foundations of Physics 13, pp
373–383 (1983)

24. H.J. Bhabha: Classical theory of electrons. Proc. Indian Acad. Sci. A 10, pp
324–332 (1939)

25. W. Kaufmann: Series of papers in Nachr. K. Ges. Wiss. Goettingen (2), pp
143–155 (1901); (5) pp 291–296 (1902); (3) pp 90–103 (1903); and Physikalische
Zeitschrift 4, pp 54–57 (1902); and Sitzungsber. K. Preuss. Akad. Wiss. 2, pp
949–956 (1905); and Annalen der Physik 19, pp 487–553 (1906)

26. J.T. Cushing: Electromagnetic mass, relativity, and the Kaufmann experiments.
Am. J. Phys. 49, pp 1133–1149 (1981)

27. A.H. Bucherer: ‘Die experimentelle Bestatigung des Relativitatspringzips. An-
nalen der Physik 28, pp 513–536 (1909)

28. G. Neumann: Die trage Masse schnell bewegter Elektronen. Annalen der Physik
45, pp 529–579 (1914)

29. N. Bohr: On the decrease of velocity of swiftly moving electrified particles in
passing through matter. Phil. Mag. 30, pp 581–612 (1915)

30. O.W. Richardson: The Electron Theory of Matter, 2nd edn (Cambridge Uni-
versity Press, Cambridge 1916)

31. E. Cunningham: The Principle of Relativity (Cambridge University Press, Cam-
bridge 1914)

32. F. Rohrlich: Classical Charged Particles, 2nd edn (Addison-Wesley, Reading,
MA 1990)

33. E. Fermi: Uber einen Widerspruch zwischen der elektrodynamischen und
der relativistischen Theorie der electromagnetischen Masse. Physikalische
Zeitschrift 23, pp 340–344 (1922)

34. J.D. Jackson: Classical Electrodynamics, 3rd edn (Wiley, New York 1999) ch 16
35. J. Larmor: On the theory of the magnetic influence on spectra; and on the

radiation from moving ions. Phil. Mag. 44, 5th Series, pp 503–512 (1897); also
in Larmor’s book: Aether and Matter (Cambridge University Press, Cambridge
1900) ch 14, sec 150

36. G.A. Schott: On the motion of the Lorentz electron. Phil. Mag. 29, pp 49–62
(1915)

37. A.D. Yaghjian, S.R. Best: Impedance, bandwidth, and Q of antennas. IEEE
Trans. Antennas Propagat. 53, pp 1298–1324 (2005)



References 147

38. H. Spohn: Dynamics of Charged Particles and their Radiation Field (Cambridge
University Press, Cambridge 2004)

39. G. Herglotz: Zur Elecktronentheorie. Nachr. K. Ges. Wiss. Goettingen (6), pp
357–382 (1903)

40. K. Wildermuth: Zur physikalischen Interpretation der Elektronenselbstbeschle-
unigung. Zeitschrift Fuer Naturforschung 10a, pp 450–459 (1955)

41. T. Erber: The classical theories of radiation reaction. Fortschritte der Physik
9, pp 343–392 (1961)

42. P. Pearle: Classical electron models. In: Electromagnetism: Paths to Research,
ed by D. Teplitz (Plenum, New York 1982) ch 7
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